问题:2个数字列表之间的余弦相似度
我需要计算两个列表之间的余弦相似度,比如说列表1是,列表2是。我不能使用任何东西,例如numpy或统计模块。我必须使用通用模块(数学等)(并尽可能减少模块数量,以减少花费的时间)。dataSetI
dataSetII
假设dataSetI
is [3, 45, 7, 2]
和dataSetII
is [2, 54, 13, 15]
。列表的长度始终相等。
当然,余弦相似度在0到1之间,因此,它将用舍入到小数点后三位或四位format(round(cosine, 3))
。
预先非常感谢您的帮助。
I need to calculate the cosine similarity between two lists, let’s say for example list 1 which is dataSetI
and list 2 which is dataSetII
. I cannot use anything such as numpy or a statistics module. I must use common modules (math, etc) (and the least modules as possible, at that, to reduce time spent).
Let’s say dataSetI
is [3, 45, 7, 2]
and dataSetII
is [2, 54, 13, 15]
. The length of the lists are always equal.
Of course, the cosine similarity is between 0 and 1, and for the sake of it, it will be rounded to the third or fourth decimal with format(round(cosine, 3))
.
Thank you very much in advance for helping.
回答 0
您应该尝试SciPy。它具有许多有用的科学例程,例如“用于数值计算积分,求解微分方程,优化和稀疏矩阵的例程”。它使用超快速优化的NumPy进行数字运算。请参阅此处进行安装。
注意space.distance.cosine计算的是distance,而不是相似度。因此,必须从1中减去该值才能获得相似性。
from scipy import spatial
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
You should try SciPy. It has a bunch of useful scientific routines for example, “routines for computing integrals numerically, solving differential equations, optimization, and sparse matrices.” It uses the superfast optimized NumPy for its number crunching. See here for installing.
Note that spatial.distance.cosine computes the distance, and not the similarity. So, you must subtract the value from 1 to get the similarity.
from scipy import spatial
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
回答 1
numpy
仅基于的另一个版本
from numpy import dot
from numpy.linalg import norm
cos_sim = dot(a, b)/(norm(a)*norm(b))
another version based on numpy
only
from numpy import dot
from numpy.linalg import norm
cos_sim = dot(a, b)/(norm(a)*norm(b))
回答 2
您可以使用cosine_similarity
功能表单sklearn.metrics.pairwise
文档
In [23]: from sklearn.metrics.pairwise import cosine_similarity
In [24]: cosine_similarity([[1, 0, -1]], [[-1,-1, 0]])
Out[24]: array([[-0.5]])
You can use cosine_similarity
function form sklearn.metrics.pairwise
docs
In [23]: from sklearn.metrics.pairwise import cosine_similarity
In [24]: cosine_similarity([[1, 0, -1]], [[-1,-1, 0]])
Out[24]: array([[-0.5]])
回答 3
我认为这里的性能并不重要,但是我无法抗拒。zip()函数完全复制了两个向量(实际上是更多的矩阵转置),只是以“ Pythonic”顺序获取数据。计时一下实现细节将是很有趣的:
import math
def cosine_similarity(v1,v2):
"compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
sumxx, sumxy, sumyy = 0, 0, 0
for i in range(len(v1)):
x = v1[i]; y = v2[i]
sumxx += x*x
sumyy += y*y
sumxy += x*y
return sumxy/math.sqrt(sumxx*sumyy)
v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))
Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712
这一次经历了像C一样的噪声,一次提取元素,但没有批量数组复制,并且所有重要的事情都在单个for循环中完成,并且使用单个平方根。
预计到达时间:将打印调用更新为功能。(原始版本是Python 2.7,而不是3.3。当前版本在带from __future__ import print_function
声明的Python 2.7下运行。)两种方法的输出都是相同的。
在3.0GHz Core 2 Duo上的CPYthon 2.7.3:
>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264
因此,在这种情况下,非Python方式要快3.6倍。
I don’t suppose performance matters much here, but I can’t resist. The zip() function completely recopies both vectors (more of a matrix transpose, actually) just to get the data in “Pythonic” order. It would be interesting to time the nuts-and-bolts implementation:
import math
def cosine_similarity(v1,v2):
"compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
sumxx, sumxy, sumyy = 0, 0, 0
for i in range(len(v1)):
x = v1[i]; y = v2[i]
sumxx += x*x
sumyy += y*y
sumxy += x*y
return sumxy/math.sqrt(sumxx*sumyy)
v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))
Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712
That goes through the C-like noise of extracting elements one-at-a-time, but does no bulk array copying and gets everything important done in a single for loop, and uses a single square root.
ETA: Updated print call to be a function. (The original was Python 2.7, not 3.3. The current runs under Python 2.7 with a from __future__ import print_function
statement.) The output is the same, either way.
CPYthon 2.7.3 on 3.0GHz Core 2 Duo:
>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264
So, the unpythonic way is about 3.6 times faster in this case.
回答 4
不使用任何进口
math.sqrt(x)
可以替换为
x ** .5
在不使用numpy.dot()的情况下,您必须使用列表理解来创建自己的点函数:
def dot(A,B):
return (sum(a*b for a,b in zip(A,B)))
然后只需应用余弦相似度公式即可:
def cosine_similarity(a,b):
return dot(a,b) / ( (dot(a,a) **.5) * (dot(b,b) ** .5) )
without using any imports
math.sqrt(x)
can be replaced with
x** .5
without using numpy.dot() you have to create your own dot function using list comprehension:
def dot(A,B):
return (sum(a*b for a,b in zip(A,B)))
and then its just a simple matter of applying the cosine similarity formula:
def cosine_similarity(a,b):
return dot(a,b) / ( (dot(a,a) **.5) * (dot(b,b) ** .5) )
回答 5
我根据问题中的几个答案进行了基准测试,以下代码段被认为是最佳选择:
def dot_product2(v1, v2):
return sum(map(operator.mul, v1, v2))
def vector_cos5(v1, v2):
prod = dot_product2(v1, v2)
len1 = math.sqrt(dot_product2(v1, v1))
len2 = math.sqrt(dot_product2(v2, v2))
return prod / (len1 * len2)
结果使我感到惊讶的是,基于的实现scipy
不是最快的。我进行了分析,发现scipy中的余弦需要大量时间才能将向量从python列表转换为numpy数组。
I did a benchmark based on several answers in the question and the following snippet is believed to be the best choice:
def dot_product2(v1, v2):
return sum(map(operator.mul, v1, v2))
def vector_cos5(v1, v2):
prod = dot_product2(v1, v2)
len1 = math.sqrt(dot_product2(v1, v1))
len2 = math.sqrt(dot_product2(v2, v2))
return prod / (len1 * len2)
The result makes me surprised that the implementation based on scipy
is not the fastest one. I profiled and find that cosine in scipy takes a lot of time to cast a vector from python list to numpy array.
回答 6
import math
from itertools import izip
def dot_product(v1, v2):
return sum(map(lambda x: x[0] * x[1], izip(v1, v2)))
def cosine_measure(v1, v2):
prod = dot_product(v1, v2)
len1 = math.sqrt(dot_product(v1, v1))
len2 = math.sqrt(dot_product(v2, v2))
return prod / (len1 * len2)
您可以在计算后将其取整:
cosine = format(round(cosine_measure(v1, v2), 3))
如果您希望它真的很短,则可以使用以下一种格式:
from math import sqrt
from itertools import izip
def cosine_measure(v1, v2):
return (lambda (x, y, z): x / sqrt(y * z))(reduce(lambda x, y: (x[0] + y[0] * y[1], x[1] + y[0]**2, x[2] + y[1]**2), izip(v1, v2), (0, 0, 0)))
import math
from itertools import izip
def dot_product(v1, v2):
return sum(map(lambda x: x[0] * x[1], izip(v1, v2)))
def cosine_measure(v1, v2):
prod = dot_product(v1, v2)
len1 = math.sqrt(dot_product(v1, v1))
len2 = math.sqrt(dot_product(v2, v2))
return prod / (len1 * len2)
You can round it after computing:
cosine = format(round(cosine_measure(v1, v2), 3))
If you want it really short, you can use this one-liner:
from math import sqrt
from itertools import izip
def cosine_measure(v1, v2):
return (lambda (x, y, z): x / sqrt(y * z))(reduce(lambda x, y: (x[0] + y[0] * y[1], x[1] + y[0]**2, x[2] + y[1]**2), izip(v1, v2), (0, 0, 0)))
回答 7
您可以使用简单的函数在Python中执行此操作:
def get_cosine(text1, text2):
vec1 = text1
vec2 = text2
intersection = set(vec1.keys()) & set(vec2.keys())
numerator = sum([vec1[x] * vec2[x] for x in intersection])
sum1 = sum([vec1[x]**2 for x in vec1.keys()])
sum2 = sum([vec2[x]**2 for x in vec2.keys()])
denominator = math.sqrt(sum1) * math.sqrt(sum2)
if not denominator:
return 0.0
else:
return round(float(numerator) / denominator, 3)
dataSet1 = [3, 45, 7, 2]
dataSet2 = [2, 54, 13, 15]
get_cosine(dataSet1, dataSet2)
You can do this in Python using simple function:
def get_cosine(text1, text2):
vec1 = text1
vec2 = text2
intersection = set(vec1.keys()) & set(vec2.keys())
numerator = sum([vec1[x] * vec2[x] for x in intersection])
sum1 = sum([vec1[x]**2 for x in vec1.keys()])
sum2 = sum([vec2[x]**2 for x in vec2.keys()])
denominator = math.sqrt(sum1) * math.sqrt(sum2)
if not denominator:
return 0.0
else:
return round(float(numerator) / denominator, 3)
dataSet1 = [3, 45, 7, 2]
dataSet2 = [2, 54, 13, 15]
get_cosine(dataSet1, dataSet2)
回答 8
使用numpy将一个数字列表与多个列表(矩阵)进行比较:
def cosine_similarity(vector,matrix):
return ( np.sum(vector*matrix,axis=1) / ( np.sqrt(np.sum(matrix**2,axis=1)) * np.sqrt(np.sum(vector**2)) ) )[::-1]
Using numpy compare one list of numbers to multiple lists(matrix):
def cosine_similarity(vector,matrix):
return ( np.sum(vector*matrix,axis=1) / ( np.sqrt(np.sum(matrix**2,axis=1)) * np.sqrt(np.sum(vector**2)) ) )[::-1]
回答 9
您可以使用以下简单函数来计算余弦相似度:
def cosine_similarity(a, b):
return sum([i*j for i,j in zip(a, b)])/(math.sqrt(sum([i*i for i in a]))* math.sqrt(sum([i*i for i in b])))
You can use this simple function to calculate the cosine similarity:
def cosine_similarity(a, b):
return sum([i*j for i,j in zip(a, b)])/(math.sqrt(sum([i*i for i in a]))* math.sqrt(sum([i*i for i in b])))
回答 10
如果您碰巧已经在使用PyTorch,则应使用其CosineSimilarity实现。
假设你有两个n
维numpy.ndarray
S,v1
和v2
,即它们的形状都是(n,)
。这就是它们的余弦相似度的方法:
import torch
import torch.nn as nn
cos = nn.CosineSimilarity()
cos(torch.tensor([v1]), torch.tensor([v2])).item()
或者,假设你有两个numpy.ndarray
小号w1
和w2
,其形状都是(m, n)
。以下内容为您提供了余弦相似度列表,每一个都是in中的一行w1
和in中的相应行之间的余弦相似性w2
:
cos(torch.tensor(w1), torch.tensor(w2)).tolist()
If you happen to be using PyTorch already, you should go with their CosineSimilarity implementation.
Suppose you have two n
-dimensional numpy.ndarray
s, v1
and v2
, i.e. their shapes are both (n,)
. Here’s how you get their cosine similarity:
import torch
import torch.nn as nn
cos = nn.CosineSimilarity()
cos(torch.tensor([v1]), torch.tensor([v2])).item()
Or suppose you have two numpy.ndarray
s w1
and w2
, whose shapes are both (m, n)
. The following gets you a list of cosine similarities, each being the cosine similarity between a row in w1
and the corresponding row in w2
:
cos(torch.tensor(w1), torch.tensor(w2)).tolist()
回答 11
对于无法使用NumPy的情况,所有答案都非常有用。如果可以的话,这是另一种方法:
def cosine(x, y):
dot_products = np.dot(x, y.T)
norm_products = np.linalg.norm(x) * np.linalg.norm(y)
return dot_products / (norm_products + EPSILON)
也要牢记EPSILON = 1e-07
确保分裂。
All the answers are great for situations where you cannot use NumPy. If you can, here is another approach:
def cosine(x, y):
dot_products = np.dot(x, y.T)
norm_products = np.linalg.norm(x) * np.linalg.norm(y)
return dot_products / (norm_products + EPSILON)
Also bear in mind about EPSILON = 1e-07
to secure the division.
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。