“ mro()”有什么作用?

问题:“ mro()”有什么作用?

django.utils.functional.py

for t in type(res).mro():  # <----- this
    if t in self.__dispatch:
        return self.__dispatch[t][funcname](res, *args, **kw)

我不明白mro()。它是做什么的,“ mro”是什么意思?

In django.utils.functional.py:

for t in type(res).mro():  # <----- this
    if t in self.__dispatch:
        return self.__dispatch[t][funcname](res, *args, **kw)

I don’t understand mro(). What does it do and what does “mro” mean?


回答 0

跟着…:

>>> class A(object): pass
... 
>>> A.__mro__
(<class '__main__.A'>, <type 'object'>)
>>> class B(A): pass
... 
>>> B.__mro__
(<class '__main__.B'>, <class '__main__.A'>, <type 'object'>)
>>> class C(A): pass
... 
>>> C.__mro__
(<class '__main__.C'>, <class '__main__.A'>, <type 'object'>)
>>> 

只要我们具有单一继承,__mro__它就只是该类的元组:类,其基础,其基础的基础,依此类推object(当然,仅适用于新型类)。

现在,具有多重继承…:

>>> class D(B, C): pass
... 
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <type 'object'>)

…您还可以确保,在中__mro__,没有类被重复,并且没有类在其祖先之后出现,除了首先进入相同多重继承级别的类(如本例中的B和C)之外,__mro__左到右。

从类的实例(而不是方法)获得的每个属性在概念上都会沿进行查找__mro__,因此,如果祖先中有多个类定义了该名称,则可以告诉您在哪里可以找到该属性-在第一个类中在__mro__定义该名称。

Follow along…:

>>> class A(object): pass
... 
>>> A.__mro__
(<class '__main__.A'>, <type 'object'>)
>>> class B(A): pass
... 
>>> B.__mro__
(<class '__main__.B'>, <class '__main__.A'>, <type 'object'>)
>>> class C(A): pass
... 
>>> C.__mro__
(<class '__main__.C'>, <class '__main__.A'>, <type 'object'>)
>>> 

As long as we have single inheritance, __mro__ is just the tuple of: the class, its base, its base’s base, and so on up to object (only works for new-style classes of course).

Now, with multiple inheritance…:

>>> class D(B, C): pass
... 
>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <type 'object'>)

…you also get the assurance that, in __mro__, no class is duplicated, and no class comes after its ancestors, save that classes that first enter at the same level of multiple inheritance (like B and C in this example) are in the __mro__ left to right.

Every attribute you get on a class’s instance, not just methods, is conceptually looked up along the __mro__, so, if more than one class among the ancestors defines that name, this tells you where the attribute will be found — in the first class in the __mro__ that defines that name.


回答 1

mro()代表方法解析顺序。它以搜索方法的顺序返回类派生的类型的列表。

mro()__mro__仅适用于新样式类。在python 3中,它们可以正常工作。但是在python 2中,这些类需要从继承object

mro() stands for Method Resolution Order. It returns a list of types the class is derived from, in the order they are searched for methods.

mro() or __mro__ works only on new style classes. In python 3, they work without any issues. But in python 2 those classes need to inherit from object.


回答 2

这也许会显示解决的顺序。

class A(object):
    def dothis(self):
        print('I am from A class')

class B(A):
    pass

class C(object):
    def dothis(self):
        print('I am from C class')

class D(B, C):
    pass

d_instance= D()
d_instance.dothis()
print(D.mro())

和响应将是

I am from A class
[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.A'>, <class '__main__.C'>, <class 'object'>]

该规则是深度优先的,在这种情况下,其含义是D,B,A,C。

在搜索继承的类时,Python通常使用深度优先的顺序,但是当两个类从同一个类继承时,Python将从mro中删除对该类的首次提及。

This would perhaps show the order of resolution.

class A(object):
    def dothis(self):
        print('I am from A class')

class B(A):
    pass

class C(object):
    def dothis(self):
        print('I am from C class')

class D(B, C):
    pass

d_instance= D()
d_instance.dothis()
print(D.mro())

and response would be

I am from A class
[<class '__main__.D'>, <class '__main__.B'>, <class '__main__.A'>, <class '__main__.C'>, <class 'object'>]

The rule is depth-first, which in this case would mean D, B, A, C.

Python normally uses a depth-first order when searching inheriting classes, but when two classes inherit from the same class, Python removes the first mention of that class from mro.


回答 3

钻石继承的解决顺序将有所不同。

class A(object):
    def dothis(self):
        print('I am from A class')


class B1(A):
    def dothis(self):
        print('I am from B1 class')
    # pass


class B2(object):
    def dothis(self):
        print('I am from B2 class')
    # pass


class B3(A):
    def dothis(self):
        print('I am from B3 class')


# Diamond inheritance
class D1(B1, B3):
    pass


class D2(B1, B2):
    pass


d1_instance = D1()
d1_instance.dothis()
# I am from B1 class
print(D1.__mro__)
# (<class '__main__.D1'>, <class '__main__.B1'>, <class '__main__.B3'>, <class '__main__.A'>, <class 'object'>)


d2_instance = D2()
d2_instance.dothis()
# I am from B1 class
print(D2.__mro__)
# (<class '__main__.D2'>, <class '__main__.B1'>, <class '__main__.A'>, <class '__main__.B2'>, <class 'object'>)

Order of resolution will be different in diamond inheritance.

class A(object):
    def dothis(self):
        print('I am from A class')


class B1(A):
    def dothis(self):
        print('I am from B1 class')
    # pass


class B2(object):
    def dothis(self):
        print('I am from B2 class')
    # pass


class B3(A):
    def dothis(self):
        print('I am from B3 class')


# Diamond inheritance
class D1(B1, B3):
    pass


class D2(B1, B2):
    pass


d1_instance = D1()
d1_instance.dothis()
# I am from B1 class
print(D1.__mro__)
# (<class '__main__.D1'>, <class '__main__.B1'>, <class '__main__.B3'>, <class '__main__.A'>, <class 'object'>)


d2_instance = D2()
d2_instance.dothis()
# I am from B1 class
print(D2.__mro__)
# (<class '__main__.D2'>, <class '__main__.B1'>, <class '__main__.A'>, <class '__main__.B2'>, <class 'object'>)