问题:NumPy或Pandas:具有NaN值时,将数组类型保持为整数

有没有一种首选的方法来将numpy数组的数据类型固定为intint64或其他),同时仍将元素内部列出为numpy.NaN

特别是,我正在将内部数据结构转换为Pandas DataFrame。在我们的结构中,我们有仍然具有NaN的整数类型的列(但该列的dtype是int)。如果我们将其设为DataFrame,似乎将所有内容重播为浮点数,但我们真的很希望成为int

有什么想法吗?

尝试过的事情:

我尝试from_records()在pandas.DataFrame下使用该功能coerce_float=False,但这并没有帮助。我还尝试使用带有NaN fill_value的NumPy蒙版数组,该数组也无法正常工作。所有这些导致列数据类型变为浮点型。

Is there a preferred way to keep the data type of a numpy array fixed as int (or int64 or whatever), while still having an element inside listed as numpy.NaN?

In particular, I am converting an in-house data structure to a Pandas DataFrame. In our structure, we have integer-type columns that still have NaN’s (but the dtype of the column is int). It seems to recast everything as a float if we make this a DataFrame, but we’d really like to be int.

Thoughts?

Things tried:

I tried using the from_records() function under pandas.DataFrame, with coerce_float=False and this did not help. I also tried using NumPy masked arrays, with NaN fill_value, which also did not work. All of these caused the column data type to become a float.


回答 0

此功能已添加到熊猫(从0.24版开始):https : //pandas.pydata.org/pandas-docs/version/0.24/whatsnew/v0.24.0.html#optional-integer-na-support

此时,它需要使用扩展名dtype Int64(大写),而不是默认的dtype int64(小写)。

This capability has been added to pandas (beginning with version 0.24): https://pandas.pydata.org/pandas-docs/version/0.24/whatsnew/v0.24.0.html#optional-integer-na-support

At this point, it requires the use of extension dtype Int64 (capitalized), rather than the default dtype int64 (lowercase).


回答 1

NaN不能存储在整数数组中。目前,这是熊猫的已知限制;我一直在等待NumPy中的NA值(与R中的NA相似)取得进展,但是至少要等6个月到一年的时间,NumPy才能获得这些功能,这似乎是:

http://pandas.pydata.org/pandas-docs/stable/gotchas.html#support-for-integer-na

(此功能是从熊猫0.24版开始添加的,但请注意,它需要使用扩展名dtype Int64(大写),而不是默认的dtype int64(小写):https : //pandas.pydata.org/pandas- docs / version / 0.24 / whatsnew / v0.24.0.html#optional-integer-na-support

NaN can’t be stored in an integer array. This is a known limitation of pandas at the moment; I have been waiting for progress to be made with NA values in NumPy (similar to NAs in R), but it will be at least 6 months to a year before NumPy gets these features, it seems:

http://pandas.pydata.org/pandas-docs/stable/gotchas.html#support-for-integer-na

(This feature has been added beginning with version 0.24 of pandas, but note it requires the use of extension dtype Int64 (capitalized), rather than the default dtype int64 (lower case): https://pandas.pydata.org/pandas-docs/version/0.24/whatsnew/v0.24.0.html#optional-integer-na-support )


回答 2

如果性能不是主要问题,则可以存储字符串。

df.col = df.col.dropna().apply(lambda x: str(int(x)) )

然后,您可以NaN根据需要随意混合。如果您确实希望拥有整数,则可以根据您的应用程序使用-1,或0,或1234567890或一些其他专用值来表示NaN

您也可以临时复制这些列:一列,有浮点数;另一个是实验型,带有整数或字符串。然后将其插入asserts每个合理的位置,以检查两者是否同步。经过足够的测试后,您可以放开浮子。

If performance is not the main issue, you can store strings instead.

df.col = df.col.dropna().apply(lambda x: str(int(x)) )

Then you can mix then with NaN as much as you want. If you really want to have integers, depending on your application, you can use -1, or 0, or 1234567890, or some other dedicated value to represent NaN.

You can also temporarily duplicate the columns: one as you have, with floats; the other one experimental, with ints or strings. Then inserts asserts in every reasonable place checking that the two are in sync. After enough testing you can let go of the floats.


回答 3

这并不是对所有情况都适用的解决方案,但我使用的是(基因座标)(NaO)

a3['MapInfo'] = a3['MapInfo'].fillna(0).astype(int)

这至少允许使用正确的“本机”列类型,如减法,比较等操作均按预期工作

This is not a solution for all cases, but mine (genomic coordinates) I’ve resorted to using 0 as NaN

a3['MapInfo'] = a3['MapInfo'].fillna(0).astype(int)

This at least allows for the proper ‘native’ column type to be used, operations like subtraction, comparison etc work as expected


回答 4

熊猫v0.24 +

支持功能 NaNv0.24或更高版本将提供整数系列。有这些信息在v0.24部分,并在更多的细节“新什么是” 空整数数据类型

Pandas v0.23及更早版本

通常,最好float在可能的情况下使用系列,即使该系列是从intfloat由于包含的NaN值。这将启用基于矢量的基于NumPy的计算,否则将处理Python级别的循环。

文档确实建议:“一种可能性是使用dtype=object数组。” 例如:

s = pd.Series([1, 2, 3, np.nan])

print(s.astype(object))

0      1
1      2
2      3
3    NaN
dtype: object

出于美观原因,例如输出到文件,此 可能是更可取的。

熊猫v0.23及更早版本:背景

当前文档(自v0.23起)指定了将整数序列向上转换为的原因float

在没有从根本上将高性能NA支持内置到NumPy中的情况下,主要的受害者是能够以整数数组表示NA。

这种权衡主要是出于内存和性能方面的考虑,并且也使得最终的Series仍然是“数字”。

该文档还提供NaN包含以下内容的上传规则

Typeclass   Promotion dtype for storing NAs
floating    no change
object      no change
integer     cast to float64
boolean     cast to object

Pandas v0.24+

Functionality to support NaN in integer series will be available in v0.24 upwards. There’s information on this in the v0.24 “What’s New” section, and more details under Nullable Integer Data Type.

Pandas v0.23 and earlier

In general, it’s best to work with float series where possible, even when the series is upcast from int to float due to inclusion of NaN values. This enables vectorised NumPy-based calculations where, otherwise, Python-level loops would be processed.

The docs do suggest : “One possibility is to use dtype=object arrays instead.” For example:

s = pd.Series([1, 2, 3, np.nan])

print(s.astype(object))

0      1
1      2
2      3
3    NaN
dtype: object

For cosmetic reasons, e.g. output to a file, this may be preferable.

Pandas v0.23 and earlier: background

. The docs currently (as of v0.23) specify the reason why integer series are upcasted to float:

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays.

This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to be “numeric”.

The docs also provide rules for upcasting due to NaN inclusion:

Typeclass   Promotion dtype for storing NAs
floating    no change
object      no change
integer     cast to float64
boolean     cast to object

回答 5

现在这是可能的,因为pandas v 0.24.0

pandas 0.24.x发行说明 Quote:“ Pandas已具备保存具有缺失值的整数dtypes的能力。

This is now possible, since pandas v 0.24.0

pandas 0.24.x release notes Quote: “Pandas has gained the ability to hold integer dtypes with missing values.


回答 6

只是想补充一下,以防您尝试将浮点数(1.143)向量转换为整数(1),并且将NA转换为新的’Int64’dtype会导致错误。为了解决这个问题,您必须四舍五入数字,然后执行“ .astype(’Int64’)”

s1 = pd.Series([1.434, 2.343, np.nan])
#without round() the next line returns an error 
s1.astype('Int64')
#cannot safely cast non-equivalent float64 to int64
##with round() it works
s1.round().astype('Int64')
0      1
1      2
2    NaN
dtype: Int64

我的用例是我有一个浮点数系列,我想四舍五入为整数,但是当您执行.round()时,数字末尾仍为’* .0’,因此您可以从末尾减去0转换为int。

Just wanted to add that in case you are trying to convert a float (1.143) vector to integer (1) that has NA converting to the new ‘Int64’ dtype will give you an error. In order to solve this you have to round the numbers and then do “.astype(‘Int64’)”

s1 = pd.Series([1.434, 2.343, np.nan])
#without round() the next line returns an error 
s1.astype('Int64')
#cannot safely cast non-equivalent float64 to int64
##with round() it works
s1.round().astype('Int64')
0      1
1      2
2    NaN
dtype: Int64

My use case is that I have a float series that I want to round to int, but when you do .round() a ‘*.0’ at the end of the number remains, so you can drop that 0 from the end by converting to int.


回答 7

如果文本数据中有空格,则通常为整数的列将转换为float64 dtype,因为int64 dtype无法处理null。如果您要加载多个文件,其中一些带有空白(最终将以float64的形式加载,而另一些将最终以int64的形式加载),则可能导致架构不一致

该代码将尝试将任何数字类型的列转换为Int64(而不是int64),因为Int64可以处理空值

import pandas as pd
import numpy as np

#show datatypes before transformation
mydf.dtypes

for c in mydf.select_dtypes(np.number).columns:
    try:
        mydf[c] = mydf[c].astype('Int64')
        print('casted {} as Int64'.format(c))
    except:
        print('could not cast {} to Int64'.format(c))

#show datatypes after transformation
mydf.dtypes

If there are blanks in the text data, columns that would normally be integers will be cast to floats as float64 dtype because int64 dtype cannot handle nulls. This can cause inconsistent schema if you are loading multiple files some with blanks (which will end up as float64 and others without which will end up as int64

This code will attempt to convert any number type columns to Int64 (as opposed to int64) since Int64 can handle nulls

import pandas as pd
import numpy as np

#show datatypes before transformation
mydf.dtypes

for c in mydf.select_dtypes(np.number).columns:
    try:
        mydf[c] = mydf[c].astype('Int64')
        print('casted {} as Int64'.format(c))
    except:
        print('could not cast {} to Int64'.format(c))

#show datatypes after transformation
mydf.dtypes

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。