问题:pandas DataFrame:用列的平均值替换nan值
我有一个熊猫DataFrame,其中大多数都是实数,但其中也有一些nan
值。
如何nan
用列的平均值替换s?
这个问题与这个问题非常相似:numpy array:用列的平均值替换nan值, 但是不幸的是,给出的解决方案不适用于pandas DataFrame。
I’ve got a pandas DataFrame filled mostly with real numbers, but there is a few nan
values in it as well.
How can I replace the nan
s with averages of columns where they are?
This question is very similar to this one: numpy array: replace nan values with average of columns but, unfortunately, the solution given there doesn’t work for a pandas DataFrame.
回答 0
您可以直接使用DataFrame.fillna
来nan
直接填充:
In [27]: df
Out[27]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 NaN -2.027325 1.533582
4 NaN NaN 0.461821
5 -0.788073 NaN NaN
6 -0.916080 -0.612343 NaN
7 -0.887858 1.033826 NaN
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
In [28]: df.mean()
Out[28]:
A -0.151121
B -0.231291
C -0.530307
dtype: float64
In [29]: df.fillna(df.mean())
Out[29]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.151121 -2.027325 1.533582
4 -0.151121 -0.231291 0.461821
5 -0.788073 -0.231291 -0.530307
6 -0.916080 -0.612343 -0.530307
7 -0.887858 1.033826 -0.530307
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
的文档字符串fillna
说,value
应该是一个标量或快译通,但是,它似乎工作用Series
为好。如果您想通过字典,可以使用df.mean().to_dict()
。
You can simply use DataFrame.fillna
to fill the nan
‘s directly:
In [27]: df
Out[27]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 NaN -2.027325 1.533582
4 NaN NaN 0.461821
5 -0.788073 NaN NaN
6 -0.916080 -0.612343 NaN
7 -0.887858 1.033826 NaN
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
In [28]: df.mean()
Out[28]:
A -0.151121
B -0.231291
C -0.530307
dtype: float64
In [29]: df.fillna(df.mean())
Out[29]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.151121 -2.027325 1.533582
4 -0.151121 -0.231291 0.461821
5 -0.788073 -0.231291 -0.530307
6 -0.916080 -0.612343 -0.530307
7 -0.887858 1.033826 -0.530307
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
The docstring of fillna
says that value
should be a scalar or a dict, however, it seems to work with a Series
as well. If you want to pass a dict, you could use df.mean().to_dict()
.
回答 1
尝试:
sub2['income'].fillna((sub2['income'].mean()), inplace=True)
Try:
sub2['income'].fillna((sub2['income'].mean()), inplace=True)
回答 2
In [16]: df = DataFrame(np.random.randn(10,3))
In [17]: df.iloc[3:5,0] = np.nan
In [18]: df.iloc[4:6,1] = np.nan
In [19]: df.iloc[5:8,2] = np.nan
In [20]: df
Out[20]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 NaN -0.985188 -0.324136
4 NaN NaN 0.238512
5 0.769657 NaN NaN
6 0.141951 0.326064 NaN
7 -1.694475 -0.523440 NaN
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
In [22]: df.mean()
Out[22]:
0 -0.251534
1 -0.040622
2 -0.841219
dtype: float64
应用每列该列的平均值并填充
In [23]: df.apply(lambda x: x.fillna(x.mean()),axis=0)
Out[23]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 -0.251534 -0.985188 -0.324136
4 -0.251534 -0.040622 0.238512
5 0.769657 -0.040622 -0.841219
6 0.141951 0.326064 -0.841219
7 -1.694475 -0.523440 -0.841219
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
In [16]: df = DataFrame(np.random.randn(10,3))
In [17]: df.iloc[3:5,0] = np.nan
In [18]: df.iloc[4:6,1] = np.nan
In [19]: df.iloc[5:8,2] = np.nan
In [20]: df
Out[20]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 NaN -0.985188 -0.324136
4 NaN NaN 0.238512
5 0.769657 NaN NaN
6 0.141951 0.326064 NaN
7 -1.694475 -0.523440 NaN
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
In [22]: df.mean()
Out[22]:
0 -0.251534
1 -0.040622
2 -0.841219
dtype: float64
Apply per-column the mean of that columns and fill
In [23]: df.apply(lambda x: x.fillna(x.mean()),axis=0)
Out[23]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 -0.251534 -0.985188 -0.324136
4 -0.251534 -0.040622 0.238512
5 0.769657 -0.040622 -0.841219
6 0.141951 0.326064 -0.841219
7 -1.694475 -0.523440 -0.841219
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
回答 3
# To read data from csv file
Dataset = pd.read_csv('Data.csv')
X = Dataset.iloc[:, :-1].values
# To calculate mean use imputer class
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
# To read data from csv file
Dataset = pd.read_csv('Data.csv')
X = Dataset.iloc[:, :-1].values
# To calculate mean use imputer class
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
回答 4
如果您想用均值来估算缺失值,并且想逐列进行计算,则只会用该列的均值来估算。这可能更具可读性。
sub2['income'] = sub2['income'].fillna((sub2['income'].mean()))
If you want to impute missing values with mean and you want to go column by column, then this will only impute with the mean of that column. This might be a little more readable.
sub2['income'] = sub2['income'].fillna((sub2['income'].mean()))
回答 5
直接使用df.fillna(df.mean())
均值填充所有空值
如果要用该列的平均值填充空值,则可以使用此值
假设x=df['Item_Weight']
这里Item_Weight
是列名
这是我们要分配的(将x的空值和x的平均值填充到x中)
df['Item_Weight'] = df['Item_Weight'].fillna((df['Item_Weight'].mean()))
如果要用某些字符串填充空值,请使用
这Outlet_size
是列名
df.Outlet_Size = df.Outlet_Size.fillna('Missing')
Directly use df.fillna(df.mean())
to fill all the null value with mean
If you want to fill null value with mean of that column then you can use this
suppose x=df['Item_Weight']
here Item_Weight
is column name
here we are assigning (fill null values of x with mean of x into x)
df['Item_Weight'] = df['Item_Weight'].fillna((df['Item_Weight'].mean()))
If you want to fill null value with some string then use
here Outlet_size
is column name
df.Outlet_Size = df.Outlet_Size.fillna('Missing')
回答 6
除上述之外,另一个选择是:
df = df.groupby(df.columns, axis = 1).transform(lambda x: x.fillna(x.mean()))
它的平均值不如以前的平均值那么优雅,但是如果您希望用其他某些列函数替换空值,它可能会更短。
Another option besides those above is:
df = df.groupby(df.columns, axis = 1).transform(lambda x: x.fillna(x.mean()))
It’s less elegant than previous responses for mean, but it could be shorter if you desire to replace nulls by some other column function.
回答 7
熊猫:如何用nan
一栏的平均值(均值),中位数或其他统计量替换NaN()值
假设您的DataFrame是,df
并且您有一列称为nr_items
。这是: df['nr_items']
如果要用列的平均值替换NaN
列的值:df['nr_items']
使用方法.fillna()
:
mean_value=df['nr_items'].mean()
df['nr_item_ave']=df['nr_items'].fillna(mean_value)
我创建了一个新df
列,称为nr_item_ave
存储新列,其中的NaN
值替换mean
为该列的值。
使用时应小心mean
。如果您有异常值,建议使用median
Pandas: How to replace NaN (nan
) values with the average (mean), median or other statistics of one column
Say your DataFrame is df
and you have one column called nr_items
. This is: df['nr_items']
If you want to replace the NaN
values of your column df['nr_items']
with the mean of the column:
Use method .fillna()
:
mean_value=df['nr_items'].mean()
df['nr_item_ave']=df['nr_items'].fillna(mean_value)
I have created a new df
column called nr_item_ave
to store the new column with the NaN
values replaced by the mean
value of the column.
You should be careful when using the mean
. If you have outliers is more recommendable to use the median
回答 8
使用sklearn库预处理类
from sklearn.impute import SimpleImputer
missingvalues = SimpleImputer(missing_values = np.nan, strategy = 'mean', axis = 0)
missingvalues = missingvalues.fit(x[:,1:3])
x[:,1:3] = missingvalues.transform(x[:,1:3])
注意:在最新版本中,参数missing_values
值更改为np.nan
fromNaN
using sklearn library preprocessing class
from sklearn.impute import SimpleImputer
missingvalues = SimpleImputer(missing_values = np.nan, strategy = 'mean', axis = 0)
missingvalues = missingvalues.fit(x[:,1:3])
x[:,1:3] = missingvalues.transform(x[:,1:3])
Note: In the recent version parameter missing_values
value change to np.nan
from NaN