问题:@property装饰器如何工作?

我想了解内置函数的property工作原理。令我感到困惑的是,property它还可以用作装饰器,但是仅当用作内置函数时才接受参数,而不能用作装饰器。

这个例子来自文档

class C(object):
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x
    def setx(self, value):
        self._x = value
    def delx(self):
        del self._x
    x = property(getx, setx, delx, "I'm the 'x' property.")

property的论点是getxsetxdelx和文档字符串。

在下面的代码中property用作装饰器。它的对象是x函数,但是在上面的代码中,参数中没有对象函数的位置。

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

并且,x.setterx.deleter装饰器是如何创建的?我很困惑。

I would like to understand how the built-in function property works. What confuses me is that property can also be used as a decorator, but it only takes arguments when used as a built-in function and not when used as a decorator.

This example is from the documentation:

class C(object):
    def __init__(self):
        self._x = None

    def getx(self):
        return self._x
    def setx(self, value):
        self._x = value
    def delx(self):
        del self._x
    x = property(getx, setx, delx, "I'm the 'x' property.")

property‘s arguments are getx, setx, delx and a doc string.

In the code below property is used as decorator. The object of it is the x function, but in the code above there is no place for an object function in the arguments.

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

And, how are the x.setter and x.deleter decorators created? I am confused.


回答 0

property()函数返回一个特殊的描述符对象

>>> property()
<property object at 0x10ff07940>

正是这种对象有额外的方法:

>>> property().getter
<built-in method getter of property object at 0x10ff07998>
>>> property().setter
<built-in method setter of property object at 0x10ff07940>
>>> property().deleter
<built-in method deleter of property object at 0x10ff07998>

这些充当装饰。他们返回一个新的属性对象:

>>> property().getter(None)
<property object at 0x10ff079f0>

那是旧对象的副本,但是替换了其中一个功能。

请记住,@decorator语法只是语法糖。语法:

@property
def foo(self): return self._foo

确实与

def foo(self): return self._foo
foo = property(foo)

因此foo该函数被替换property(foo),我们在上面看到的是一个特殊的对象。然后,当您使用时@foo.setter(),您正在做的就是调用property().setter上面显示的方法,该方法将返回该属性的新副本,但是这次将setter函数替换为装饰方法。

下面的序列还通过使用那些装饰器方法创建了一个全开属性。

首先,我们property仅使用getter 创建一些函数和一个对象:

>>> def getter(self): print('Get!')
... 
>>> def setter(self, value): print('Set to {!r}!'.format(value))
... 
>>> def deleter(self): print('Delete!')
... 
>>> prop = property(getter)
>>> prop.fget is getter
True
>>> prop.fset is None
True
>>> prop.fdel is None
True

接下来,我们使用该.setter()方法添加setter:

>>> prop = prop.setter(setter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is None
True

最后,我们使用以下.deleter()方法添加删除器:

>>> prop = prop.deleter(deleter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is deleter
True

最后但并非最不重要的一点是,该property对象充当描述符对象,因此它具有和.__get__(),可以.__set__().__delete__()实例属性的获取,设置和删除方法挂钩:

>>> class Foo: pass
... 
>>> prop.__get__(Foo(), Foo)
Get!
>>> prop.__set__(Foo(), 'bar')
Set to 'bar'!
>>> prop.__delete__(Foo())
Delete!

Descriptor Howto包括以下类型的纯Python示例实现property()

class Property:
    "Emulate PyProperty_Type() in Objects/descrobject.c"

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def __set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def __delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

The property() function returns a special descriptor object:

>>> property()
<property object at 0x10ff07940>

It is this object that has extra methods:

>>> property().getter
<built-in method getter of property object at 0x10ff07998>
>>> property().setter
<built-in method setter of property object at 0x10ff07940>
>>> property().deleter
<built-in method deleter of property object at 0x10ff07998>

These act as decorators too. They return a new property object:

>>> property().getter(None)
<property object at 0x10ff079f0>

that is a copy of the old object, but with one of the functions replaced.

Remember, that the @decorator syntax is just syntactic sugar; the syntax:

@property
def foo(self): return self._foo

really means the same thing as

def foo(self): return self._foo
foo = property(foo)

so foo the function is replaced by property(foo), which we saw above is a special object. Then when you use @foo.setter(), what you are doing is call that property().setter method I showed you above, which returns a new copy of the property, but this time with the setter function replaced with the decorated method.

The following sequence also creates a full-on property, by using those decorator methods.

First we create some functions and a property object with just a getter:

>>> def getter(self): print('Get!')
... 
>>> def setter(self, value): print('Set to {!r}!'.format(value))
... 
>>> def deleter(self): print('Delete!')
... 
>>> prop = property(getter)
>>> prop.fget is getter
True
>>> prop.fset is None
True
>>> prop.fdel is None
True

Next we use the .setter() method to add a setter:

>>> prop = prop.setter(setter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is None
True

Last we add a deleter with the .deleter() method:

>>> prop = prop.deleter(deleter)
>>> prop.fget is getter
True
>>> prop.fset is setter
True
>>> prop.fdel is deleter
True

Last but not least, the property object acts as a descriptor object, so it has .__get__(), .__set__() and .__delete__() methods to hook into instance attribute getting, setting and deleting:

>>> class Foo: pass
... 
>>> prop.__get__(Foo(), Foo)
Get!
>>> prop.__set__(Foo(), 'bar')
Set to 'bar'!
>>> prop.__delete__(Foo())
Delete!

The Descriptor Howto includes a pure Python sample implementation of the property() type:

class Property:
    "Emulate PyProperty_Type() in Objects/descrobject.c"

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
        self.fget = fget
        self.fset = fset
        self.fdel = fdel
        if doc is None and fget is not None:
            doc = fget.__doc__
        self.__doc__ = doc

    def __get__(self, obj, objtype=None):
        if obj is None:
            return self
        if self.fget is None:
            raise AttributeError("unreadable attribute")
        return self.fget(obj)

    def __set__(self, obj, value):
        if self.fset is None:
            raise AttributeError("can't set attribute")
        self.fset(obj, value)

    def __delete__(self, obj):
        if self.fdel is None:
            raise AttributeError("can't delete attribute")
        self.fdel(obj)

    def getter(self, fget):
        return type(self)(fget, self.fset, self.fdel, self.__doc__)

    def setter(self, fset):
        return type(self)(self.fget, fset, self.fdel, self.__doc__)

    def deleter(self, fdel):
        return type(self)(self.fget, self.fset, fdel, self.__doc__)

回答 1

文档说这只是创建只读属性的捷径。所以

@property
def x(self):
    return self._x

相当于

def getx(self):
    return self._x
x = property(getx)

Documentation says it’s just a shortcut for creating readonly properties. So

@property
def x(self):
    return self._x

is equivalent to

def getx(self):
    return self._x
x = property(getx)

回答 2

这是如何@property实现的最小示例:

class Thing:
    def __init__(self, my_word):
        self._word = my_word 
    @property
    def word(self):
        return self._word

>>> print( Thing('ok').word )
'ok'

否则,将word保留方法而不是属性。

class Thing:
    def __init__(self, my_word):
        self._word = my_word
    def word(self):
        return self._word

>>> print( Thing('ok').word() )
'ok'

Here is a minimal example of how @property can be implemented:

class Thing:
    def __init__(self, my_word):
        self._word = my_word 
    @property
    def word(self):
        return self._word

>>> print( Thing('ok').word )
'ok'

Otherwise word remains a method instead of a property.

class Thing:
    def __init__(self, my_word):
        self._word = my_word
    def word(self):
        return self._word

>>> print( Thing('ok').word() )
'ok'

回答 3

第一部分很简单:

@property
def x(self): ...

是相同的

def x(self): ...
x = property(x)
  • 反过来,这是property仅使用getter 创建a的简化语法。

下一步将使用设置器和删除器扩展此属性。并通过适当的方法来实现:

@x.setter
def x(self, value): ...

返回一个新属性,该属性继承了旧属性x以及给定的setter的所有内容。

x.deleter 以相同的方式工作。

The first part is simple:

@property
def x(self): ...

is the same as

def x(self): ...
x = property(x)
  • which, in turn, is the simplified syntax for creating a property with just a getter.

The next step would be to extend this property with a setter and a deleter. And this happens with the appropriate methods:

@x.setter
def x(self, value): ...

returns a new property which inherits everything from the old x plus the given setter.

x.deleter works the same way.


回答 4

以下内容:

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

是相同的:

class C(object):
    def __init__(self):
        self._x = None

    def _x_get(self):
        return self._x

    def _x_set(self, value):
        self._x = value

    def _x_del(self):
        del self._x

    x = property(_x_get, _x_set, _x_del, 
                    "I'm the 'x' property.")

是相同的:

class C(object):
    def __init__(self):
        self._x = None

    def _x_get(self):
        return self._x

    def _x_set(self, value):
        self._x = value

    def _x_del(self):
        del self._x

    x = property(_x_get, doc="I'm the 'x' property.")
    x = x.setter(_x_set)
    x = x.deleter(_x_del)

是相同的:

class C(object):
    def __init__(self):
        self._x = None

    def _x_get(self):
        return self._x
    x = property(_x_get, doc="I'm the 'x' property.")

    def _x_set(self, value):
        self._x = value
    x = x.setter(_x_set)

    def _x_del(self):
        del self._x
    x = x.deleter(_x_del)

等同于:

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

This following:

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

Is the same as:

class C(object):
    def __init__(self):
        self._x = None

    def _x_get(self):
        return self._x

    def _x_set(self, value):
        self._x = value

    def _x_del(self):
        del self._x

    x = property(_x_get, _x_set, _x_del, 
                    "I'm the 'x' property.")

Is the same as:

class C(object):
    def __init__(self):
        self._x = None

    def _x_get(self):
        return self._x

    def _x_set(self, value):
        self._x = value

    def _x_del(self):
        del self._x

    x = property(_x_get, doc="I'm the 'x' property.")
    x = x.setter(_x_set)
    x = x.deleter(_x_del)

Is the same as:

class C(object):
    def __init__(self):
        self._x = None

    def _x_get(self):
        return self._x
    x = property(_x_get, doc="I'm the 'x' property.")

    def _x_set(self, value):
        self._x = value
    x = x.setter(_x_set)

    def _x_del(self):
        del self._x
    x = x.deleter(_x_del)

Which is the same as :

class C(object):
    def __init__(self):
        self._x = None

    @property
    def x(self):
        """I'm the 'x' property."""
        return self._x

    @x.setter
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

回答 5

下面是另一个示例,该示例在@property需要重构代码的情况下如何提供帮助(从此处进行总结):

假设您创建了一个Money这样的类:

class Money:
    def __init__(self, dollars, cents):
        self.dollars = dollars
        self.cents = cents

并且用户根据他/她使用的此类创建一个库

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

现在,让我们假设您决定更改您的Money类并摆脱dollarscents属性,而是决定仅跟踪总分:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

如果上述用户现在尝试像以前一样运行他/她的库

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))

这会导致错误

AttributeError:“ Money”对象没有属性“ dollars”

也就是说,现在大家谁依赖于原始的手段Money类将不得不改变所有代码行,其中dollarscents使用可以是非常痛苦……那么,怎么会这样避免?通过使用@property

就是那样:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

    # Getter and setter for dollars...
    @property
    def dollars(self):
        return self.total_cents // 100

    @dollars.setter
    def dollars(self, new_dollars):
        self.total_cents = 100 * new_dollars + self.cents

    # And the getter and setter for cents.
    @property
    def cents(self):
        return self.total_cents % 100

    @cents.setter
    def cents(self, new_cents):
        self.total_cents = 100 * self.dollars + new_cents

现在我们从图书馆打电话时

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

它会按预期工作,我们不必在库中更改任何代码!实际上,我们甚至不必知道我们依赖的库已更改。

setter可以正常工作:

money.dollars += 2
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 12 cents.

money.cents += 10
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 22 cents.

您也@property可以在抽象类中使用。我在这里举一个最小的例子。

Below is another example on how @property can help when one has to refactor code which is taken from here (I only summarize it below):

Imagine you created a class Money like this:

class Money:
    def __init__(self, dollars, cents):
        self.dollars = dollars
        self.cents = cents

and an user creates a library depending on this class where he/she uses e.g.

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

Now let’s suppose you decide to change your Money class and get rid of the dollars and cents attributes but instead decide to only track the total amount of cents:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

If the above mentioned user now tries to run his/her library as before

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))

it will result in an error

AttributeError: ‘Money’ object has no attribute ‘dollars’

That means that now everyone who relies on your original Money class would have to change all lines of code where dollars and cents are used which can be very painful… So, how could this be avoided? By using @property!

That is how:

class Money:
    def __init__(self, dollars, cents):
        self.total_cents = dollars * 100 + cents

    # Getter and setter for dollars...
    @property
    def dollars(self):
        return self.total_cents // 100

    @dollars.setter
    def dollars(self, new_dollars):
        self.total_cents = 100 * new_dollars + self.cents

    # And the getter and setter for cents.
    @property
    def cents(self):
        return self.total_cents % 100

    @cents.setter
    def cents(self, new_cents):
        self.total_cents = 100 * self.dollars + new_cents

when we now call from our library

money = Money(27, 12)

print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 27 dollar and 12 cents.

it will work as expected and we did not have to change a single line of code in our library! In fact, we would not even have to know that the library we depend on changed.

Also the setter works fine:

money.dollars += 2
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 12 cents.

money.cents += 10
print("I have {} dollar and {} cents.".format(money.dollars, money.cents))
# prints I have 29 dollar and 22 cents.

You can use @property also in abstract classes; I give a minimal example here.


回答 6

我在这里阅读了所有文章,并意识到我们可能需要一个真实的例子。为什么实际上我们有@property?因此,考虑使用身份验证系统的Flask应用。您在中声明模型用户models.py

class User(UserMixin, db.Model):
    __tablename__ = 'users'
    id = db.Column(db.Integer, primary_key=True)
    email = db.Column(db.String(64), unique=True, index=True)
    username = db.Column(db.String(64), unique=True, index=True)
    password_hash = db.Column(db.String(128))

    ...

    @property
    def password(self):
        raise AttributeError('password is not a readable attribute')

    @password.setter
    def password(self, password):
        self.password_hash = generate_password_hash(password)

    def verify_password(self, password):
        return check_password_hash(self.password_hash, password)

在这段代码中,我们password使用了“隐藏”属性,当您尝试直接访问它时@property,该属性会触发AttributeError断言,而我们使用@ property.setter来设置实际的实例变量password_hash

现在,auth/views.py我们可以实例化一个用户:

...
@auth.route('/register', methods=['GET', 'POST'])
def register():
    form = RegisterForm()
    if form.validate_on_submit():
        user = User(email=form.email.data,
                    username=form.username.data,
                    password=form.password.data)
        db.session.add(user)
        db.session.commit()
...

password用户填写表单时,该属性来自注册表单。密码确认发生在前端EqualTo('password', message='Passwords must match')(如果您想知道,但这是与Flask表单相关的其他主题)。

我希望这个例子会有用

I read all the posts here and realized that we may need a real life example. Why, actually, we have @property? So, consider a Flask app where you use authentication system. You declare a model User in models.py:

class User(UserMixin, db.Model):
    __tablename__ = 'users'
    id = db.Column(db.Integer, primary_key=True)
    email = db.Column(db.String(64), unique=True, index=True)
    username = db.Column(db.String(64), unique=True, index=True)
    password_hash = db.Column(db.String(128))

    ...

    @property
    def password(self):
        raise AttributeError('password is not a readable attribute')

    @password.setter
    def password(self, password):
        self.password_hash = generate_password_hash(password)

    def verify_password(self, password):
        return check_password_hash(self.password_hash, password)

In this code we’ve “hidden” attribute password by using @property which triggers AttributeError assertion when you try to access it directly, while we used @property.setter to set the actual instance variable password_hash.

Now in auth/views.py we can instantiate a User with:

...
@auth.route('/register', methods=['GET', 'POST'])
def register():
    form = RegisterForm()
    if form.validate_on_submit():
        user = User(email=form.email.data,
                    username=form.username.data,
                    password=form.password.data)
        db.session.add(user)
        db.session.commit()
...

Notice attribute password that comes from a registration form when a user fills the form. Password confirmation happens on the front end with EqualTo('password', message='Passwords must match') (in case if you are wondering, but it’s a different topic related Flask forms).

I hope this example will be useful


回答 7

那里的很多人都清楚了这一点,但这是我一直在寻找的直接点。我觉得从@property装饰器开始很重要。例如:-

class UtilityMixin():
    @property
    def get_config(self):
        return "This is property"

函数“ get_config()”的调用将像这样工作。

util = UtilityMixin()
print(util.get_config)

如果您注意到我没有使用“()”括号来调用该函数。这是我在搜索@property装饰器的基本内容。这样您就可以像使用变量一样使用函数。

This point is been cleared by many people up there but here is a direct point which I was searching. This is what I feel is important to start with the @property decorator. eg:-

class UtilityMixin():
    @property
    def get_config(self):
        return "This is property"

The calling of function “get_config()” will work like this.

util = UtilityMixin()
print(util.get_config)

If you notice I have not used “()” brackets for calling the function. This is the basic thing which I was searching for the @property decorator. So that you can use your function just like a variable.


回答 8

让我们从Python装饰器开始。

Python装饰器是一个函数,可以帮助向已经定义的函数添加一些其他功能。

在Python中,一切都是对象。Python中的函数是一流的对象,这意味着它们可以被变量引用,添加到列表中,作为参数传递给另一个函数等。

考虑以下代码片段。

def decorator_func(fun):
    def wrapper_func():
        print("Wrapper function started")
        fun()
        print("Given function decorated")
        # Wrapper function add something to the passed function and decorator 
        # returns the wrapper function
    return wrapper_func

def say_bye():
    print("bye!!")

say_bye = decorator_func(say_bye)
say_bye()

# Output:
#  Wrapper function started
#  bye
#  Given function decorated

在这里,我们可以说装饰器函数修改了我们的say_hello函数,并在其中添加了一些额外的代码行。

装饰器的Python语法

def decorator_func(fun):
    def wrapper_func():
        print("Wrapper function started")
        fun()
        print("Given function decorated")
        # Wrapper function add something to the passed function and decorator 
        # returns the wrapper function
    return wrapper_func

@decorator_func
def say_bye():
    print("bye!!")

say_bye()

最后,让我们结束一个案例案例,但在此之前,让我们先讨论一些糟糕的原则。

在许多面向对象的编程语言中都使用getter和setter来确保数据封装的原理(被视为将数据与对这些数据进行操作的方法捆绑在一起)。

这些方法当然是用于获取数据的吸气剂和用于更改数据的设置器。

根据此原理,将一个类的属性设为私有,以隐藏它们并保护它们免受其他代码的侵害。

是的,@ property基本上是使用getter和setterpythonic方法。

Python有一个伟大的概念,称为属性,它使面向对象的程序员的生活变得更加简单。

让我们假设您决定创建一个可以存储摄氏温度的类。

class Celsius:
def __init__(self, temperature = 0):
    self.set_temperature(temperature)

def to_fahrenheit(self):
    return (self.get_temperature() * 1.8) + 32

def get_temperature(self):
    return self._temperature

def set_temperature(self, value):
    if value < -273:
        raise ValueError("Temperature below -273 is not possible")
    self._temperature = value

重构代码,这是我们可以通过属性实现的方法。

在Python中,property()是一个内置函数,可创建并返回属性对象。

属性对象具有三种方法,getter(),setter()和delete()。

class Celsius:
def __init__(self, temperature = 0):
    self.temperature = temperature

def to_fahrenheit(self):
    return (self.temperature * 1.8) + 32

def get_temperature(self):
    print("Getting value")
    return self.temperature

def set_temperature(self, value):
    if value < -273:
        raise ValueError("Temperature below -273 is not possible")
    print("Setting value")
    self.temperature = value

temperature = property(get_temperature,set_temperature)

这里,

temperature = property(get_temperature,set_temperature)

本可以分解为

# make empty property
temperature = property()
# assign fget
temperature = temperature.getter(get_temperature)
# assign fset
temperature = temperature.setter(set_temperature)

注意事项:

  • get_temperature仍然是属性而不是方法。

现在,您可以通过写入来获取温度值。

C = Celsius()
C.temperature
# instead of writing C.get_temperature()

我们可以进一步继续,不要定义名称get_temperatureset_temperature,因为它们是不必要的,并污染类命名空间。

解决上述问题的pythonic方法是使用@property

class Celsius:
    def __init__(self, temperature = 0):
        self.temperature = temperature

    def to_fahrenheit(self):
        return (self.temperature * 1.8) + 32

    @property
    def temperature(self):
        print("Getting value")
        return self.temperature

    @temperature.setter
    def temperature(self, value):
        if value < -273:
            raise ValueError("Temperature below -273 is not possible")
        print("Setting value")
        self.temperature = value

注意事项-

  1. 用于获取值的方法以“ @property”修饰。
  2. 用作设置器的方法用“ @ temperature.setter”修饰,如果该函数被称为“ x”,则必须用“ @ x.setter”修饰。
  3. 我们用相同的名称和不同数量的参数“ def temperature(self)”和“ def temperature(self,x)”编写了“两个”方法。

如您所见,该代码绝对不太优雅。

现在,让我们谈谈一个现实的实用场景。

假设您设计的类如下:

class OurClass:

    def __init__(self, a):
        self.x = a


y = OurClass(10)
print(y.x)

现在,让我们进一步假设我们的类在客户中很受欢迎,并且他们开始在程序中使用它。他们对对象进行了各种分配。

有朝一日,一个值得信赖的客户来找我们,建议“ x”的值必须在0到1000之间,这确实是一个可怕的情况!

由于属性,这很容易:我们创建属性版本“ x”。

class OurClass:

    def __init__(self,x):
        self.x = x

    @property
    def x(self):
        return self.__x

    @x.setter
    def x(self, x):
        if x < 0:
            self.__x = 0
        elif x > 1000:
            self.__x = 1000
        else:
            self.__x = x

很好,不是吗:您可以从可以想象到的最简单的实现开始,并且以后可以随意迁移到属性版本,而不必更改接口!因此,属性不仅仅是吸气剂和塞特剂的替代品!

您可以在此处检查此实现

Let’s start with Python decorators.

A Python decorator is a function that helps to add some additional functionalities to an already defined function.

In Python, everything is an object. Functions in Python are first-class objects which means that they can be referenced by a variable, added in the lists, passed as arguments to another function etc.

Consider the following code snippet.

def decorator_func(fun):
    def wrapper_func():
        print("Wrapper function started")
        fun()
        print("Given function decorated")
        # Wrapper function add something to the passed function and decorator 
        # returns the wrapper function
    return wrapper_func

def say_bye():
    print("bye!!")

say_bye = decorator_func(say_bye)
say_bye()

# Output:
#  Wrapper function started
#  bye
#  Given function decorated

Here, we can say that decorator function modified our say_hello function and added some extra lines of code in it.

Python syntax for decorator

def decorator_func(fun):
    def wrapper_func():
        print("Wrapper function started")
        fun()
        print("Given function decorated")
        # Wrapper function add something to the passed function and decorator 
        # returns the wrapper function
    return wrapper_func

@decorator_func
def say_bye():
    print("bye!!")

say_bye()

Let’s Concluded everything than with a case scenario, but before that let’s talk about some oops priniciples.

Getters and setters are used in many object oriented programming languages to ensure the principle of data encapsulation(is seen as the bundling of data with the methods that operate on these data.)

These methods are of course the getter for retrieving the data and the setter for changing the data.

According to this principle, the attributes of a class are made private to hide and protect them from other code.

Yup, @property is basically a pythonic way to use getters and setters.

Python has a great concept called property which makes the life of an object-oriented programmer much simpler.

Let us assume that you decide to make a class that could store the temperature in degree Celsius.

class Celsius:
def __init__(self, temperature = 0):
    self.set_temperature(temperature)

def to_fahrenheit(self):
    return (self.get_temperature() * 1.8) + 32

def get_temperature(self):
    return self._temperature

def set_temperature(self, value):
    if value < -273:
        raise ValueError("Temperature below -273 is not possible")
    self._temperature = value

Refactored Code, Here is how we could have achieved it with property.

In Python, property() is a built-in function that creates and returns a property object.

A property object has three methods, getter(), setter(), and delete().

class Celsius:
def __init__(self, temperature = 0):
    self.temperature = temperature

def to_fahrenheit(self):
    return (self.temperature * 1.8) + 32

def get_temperature(self):
    print("Getting value")
    return self.temperature

def set_temperature(self, value):
    if value < -273:
        raise ValueError("Temperature below -273 is not possible")
    print("Setting value")
    self.temperature = value

temperature = property(get_temperature,set_temperature)

Here,

temperature = property(get_temperature,set_temperature)

could have been broken down as,

# make empty property
temperature = property()
# assign fget
temperature = temperature.getter(get_temperature)
# assign fset
temperature = temperature.setter(set_temperature)

Point To Note:

  • get_temperature remains a property instead of a method.

Now you can access the value of temperature by writing.

C = Celsius()
C.temperature
# instead of writing C.get_temperature()

We can further go on and not define names get_temperature and set_temperature as they are unnecessary and pollute the class namespace.

The pythonic way to deal with the above problem is to use @property.

class Celsius:
    def __init__(self, temperature = 0):
        self.temperature = temperature

    def to_fahrenheit(self):
        return (self.temperature * 1.8) + 32

    @property
    def temperature(self):
        print("Getting value")
        return self.temperature

    @temperature.setter
    def temperature(self, value):
        if value < -273:
            raise ValueError("Temperature below -273 is not possible")
        print("Setting value")
        self.temperature = value

Points to Note –

  1. A method which is used for getting a value is decorated with “@property”.
  2. The method which has to function as the setter is decorated with “@temperature.setter”, If the function had been called “x”, we would have to decorate it with “@x.setter”.
  3. We wrote “two” methods with the same name and a different number of parameters “def temperature(self)” and “def temperature(self,x)”.

As you can see, the code is definitely less elegant.

Now,let’s talk about one real-life practical scenerio.

Let’s say you have designed a class as follows:

class OurClass:

    def __init__(self, a):
        self.x = a


y = OurClass(10)
print(y.x)

Now, let’s further assume that our class got popular among clients and they started using it in their programs, They did all kinds of assignments to the object.

And One fateful day, a trusted client came to us and suggested that “x” has to be a value between 0 and 1000, this is really a horrible scenario!

Due to properties it’s easy: We create a property version of “x”.

class OurClass:

    def __init__(self,x):
        self.x = x

    @property
    def x(self):
        return self.__x

    @x.setter
    def x(self, x):
        if x < 0:
            self.__x = 0
        elif x > 1000:
            self.__x = 1000
        else:
            self.__x = x

This is great, isn’t it: You can start with the simplest implementation imaginable, and you are free to later migrate to a property version without having to change the interface! So properties are not just a replacement for getters and setter!

You can check this Implementation here


回答 9

property@property装饰器背后的一类。

您可以随时检查以下内容:

print(property) #<class 'property'>

我改写了示例,help(property)以显示@property语法

class C:
    def __init__(self):
        self._x=None

    @property 
    def x(self):
        return self._x

    @x.setter 
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

c = C()
c.x="a"
print(c.x)

在功能上与property()语法相同:

class C:
    def __init__(self):
        self._x=None

    def g(self):
        return self._x

    def s(self, v):
        self._x = v

    def d(self):
        del self._x

    prop = property(g,s,d)

c = C()
c.x="a"
print(c.x)

如您所见,我们使用该属性的方式没有什么不同。

为了回答这个问题,@property装饰器是通过property类实现的。


因此,问题是要对该property类进行一些解释。这行:

prop = property(g,s,d)

是初始化。我们可以这样重写它:

prop = property(fget=g,fset=s,fdel=d)

的含义fgetfsetfdel

 |    fget
 |      function to be used for getting an attribute value
 |    fset
 |      function to be used for setting an attribute value
 |    fdel
 |      function to be used for del'ing an attribute
 |    doc
 |      docstring

下图显示了我们从类中获得的三胞胎property

在此处输入图片说明

__get____set____delete__那里被覆盖。这是Python中描述符模式的实现。

通常,描述符是具有“绑定行为”的对象属性,其属性访问已被描述符协议中的方法所覆盖。

我们还可以使用属性settergetterdeleter方法的功能绑定属性。检查下一个示例。s2该类的方法C会将属性设置为double

class C:
    def __init__(self):
        self._x=None

    def g(self):
        return self._x

    def s(self, x):
        self._x = x

    def d(self):
        del self._x

    def s2(self,x):
        self._x=x+x


    x=property(g)
    x=x.setter(s)
    x=x.deleter(d)      


c = C()
c.x="a"
print(c.x) # outputs "a"

C.x=property(C.g, C.s2)
C.x=C.x.deleter(C.d)
c2 = C()
c2.x="a"
print(c2.x) # outputs "aa"

property is a class behind @property decorator.

You can always check this:

print(property) #<class 'property'>

I rewrote the example from help(property) to show that the @property syntax

class C:
    def __init__(self):
        self._x=None

    @property 
    def x(self):
        return self._x

    @x.setter 
    def x(self, value):
        self._x = value

    @x.deleter
    def x(self):
        del self._x

c = C()
c.x="a"
print(c.x)

is functionally identical to property() syntax:

class C:
    def __init__(self):
        self._x=None

    def g(self):
        return self._x

    def s(self, v):
        self._x = v

    def d(self):
        del self._x

    prop = property(g,s,d)

c = C()
c.x="a"
print(c.x)

There is no difference how we use the property as you can see.

To answer the question @property decorator is implemented via property class.


So, the question is to explain the property class a bit. This line:

prop = property(g,s,d)

Was the initialization. We can rewrite it like this:

prop = property(fget=g,fset=s,fdel=d)

The meaning of fget, fset and fdel:

 |    fget
 |      function to be used for getting an attribute value
 |    fset
 |      function to be used for setting an attribute value
 |    fdel
 |      function to be used for del'ing an attribute
 |    doc
 |      docstring

The next image shows the triplets we have, from the class property:

enter image description here

__get__, __set__, and __delete__ are there to be overridden. This is the implementation of the descriptor pattern in Python.

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by methods in the descriptor protocol.

We can also use property setter, getter and deleter methods to bind the function to property. Check the next example. The method s2 of the class C will set the property doubled.

class C:
    def __init__(self):
        self._x=None

    def g(self):
        return self._x

    def s(self, x):
        self._x = x

    def d(self):
        del self._x

    def s2(self,x):
        self._x=x+x


    x=property(g)
    x=x.setter(s)
    x=x.deleter(d)      


c = C()
c.x="a"
print(c.x) # outputs "a"

C.x=property(C.g, C.s2)
C.x=C.x.deleter(C.d)
c2 = C()
c2.x="a"
print(c2.x) # outputs "aa"

回答 10

可以通过两种方式声明属性。

  • 为属性创建getter,setter方法,然后将它们作为参数传递给属性函数
  • 使用@property装饰器。

您可以看一下我编写的有关python属性的一些示例。

A property can be declared in two ways.

  • Creating the getter, setter methods for an attribute and then passing these as argument to property function
  • Using the @property decorator.

You can have a look at few examples I have written about properties in python.


回答 11

最好的解释可以在这里找到:Python @Property Explained –如何使用和何时使用?(完整示例)Selva Prabhakaran | 发表于十一月5,2018

它帮助我理解了为什么不仅如此。

https://www.machinelearningplus.com/python/python-property/

The best explanation can be found here: Python @Property Explained – How to Use and When? (Full Examples) by Selva Prabhakaran | Posted on November 5, 2018

It helped me understand WHY not only HOW.

https://www.machinelearningplus.com/python/python-property/


回答 12

这是另一个示例:

##
## Python Properties Example
##
class GetterSetterExample( object ):
    ## Set the default value for x ( we reference it using self.x, set a value using self.x = value )
    __x = None


##
## On Class Initialization - do something... if we want..
##
def __init__( self ):
    ## Set a value to __x through the getter / setter... Since __x is defined above, this doesn't need to be set...
    self.x = 1234

    return None


##
## Define x as a property, ie a getter - All getters should have a default value arg, so I added it - it will not be passed in when setting a value, so you need to set the default here so it will be used..
##
@property
def x( self, _default = None ):
    ## I added an optional default value argument as all getters should have this - set it to the default value you want to return...
    _value = ( self.__x, _default )[ self.__x == None ]

    ## Debugging - so you can see the order the calls are made...
    print( '[ Test Class ] Get x = ' + str( _value ) )

    ## Return the value - we are a getter afterall...
    return _value


##
## Define the setter function for x...
##
@x.setter
def x( self, _value = None ):
    ## Debugging - so you can see the order the calls are made...
    print( '[ Test Class ] Set x = ' + str( _value ) )

    ## This is to show the setter function works.... If the value is above 0, set it to a negative value... otherwise keep it as is ( 0 is the only non-negative number, it can't be negative or positive anyway )
    if ( _value > 0 ):
        self.__x = -_value
    else:
        self.__x = _value


##
## Define the deleter function for x...
##
@x.deleter
def x( self ):
    ## Unload the assignment / data for x
    if ( self.__x != None ):
        del self.__x


##
## To String / Output Function for the class - this will show the property value for each property we add...
##
def __str__( self ):
    ## Output the x property data...
    print( '[ x ] ' + str( self.x ) )


    ## Return a new line - technically we should return a string so it can be printed where we want it, instead of printed early if _data = str( C( ) ) is used....
    return '\n'

##
##
##
_test = GetterSetterExample( )
print( _test )

## For some reason the deleter isn't being called...
del _test.x

基本上,与C(object)示例相同,只是我改用x …我也不在__init中初始化 -…很好..我可以,但是可以删除它,因为__x被定义为一部分班上的…

输出为:

[ Test Class ] Set x = 1234
[ Test Class ] Get x = -1234
[ x ] -1234

如果我将init的self.x = 1234注释掉,则输出为:

[ Test Class ] Get x = None
[ x ] None

并且如果我在getter函数中将_default = None设置为_default = 0(因为所有的getter都应具有默认值,但不会被我所看到的属性值传递,因此您可以在此处定义它,以及它实际上还不错,因为您可以定义一次默认值并在所有地方使用它),即:def x(self,_default = 0):

[ Test Class ] Get x = 0
[ x ] 0

注意:getter逻辑只是为了让它操纵值以确保它被操纵-与print语句相同…

注意:我习惯了Lua,并且在调用单个函数时能够动态创建10个以上的助手,并且我在不使用属性的情况下为Python做了类似的事情,并且在一定程度上可以正常工作,但是,即使这些函数是在之前创建的被使用时,在创建它们之前有时仍会调用它们,这很奇怪,因为它不是以这种方式编码的。。。我更喜欢Lua元表的灵活性,而且我可以使用实际的setter / getters。而不是本质上直接访问变量…我确实喜欢用Python可以快速构建某些东西-例如gui程序。尽管没有大量其他库,虽然我正在设计的库可能无法实现-如果我在AutoHotkey中对其进行编码,则可以直接访问所需的dll调用,并且可以在Java,C#,C ++,

注意:此论坛中的代码输出已损坏-我必须在代码的第一部分中添加空格才能使其正常工作-复制/粘贴时,请确保将所有空格都转换为制表符…。我在Python中使用制表符,因为在10,000行的文件大小可以为512KB至1MB(带空格)和100至200KB(带制表符),这在文件大小和减少处理时间方面存在巨大差异。

还可以按用户调整选项卡-因此,如果您希望使用2个空格宽度,4个,8个空格或您可以做的任何事情,这意味着它对于有视力缺陷的开发人员来说是体贴的。

注意:由于论坛软件中的错误,该类中定义的所有功能均未正确缩进-如果复制/粘贴,请确保将其缩进

Here is another example:

##
## Python Properties Example
##
class GetterSetterExample( object ):
    ## Set the default value for x ( we reference it using self.x, set a value using self.x = value )
    __x = None


##
## On Class Initialization - do something... if we want..
##
def __init__( self ):
    ## Set a value to __x through the getter / setter... Since __x is defined above, this doesn't need to be set...
    self.x = 1234

    return None


##
## Define x as a property, ie a getter - All getters should have a default value arg, so I added it - it will not be passed in when setting a value, so you need to set the default here so it will be used..
##
@property
def x( self, _default = None ):
    ## I added an optional default value argument as all getters should have this - set it to the default value you want to return...
    _value = ( self.__x, _default )[ self.__x == None ]

    ## Debugging - so you can see the order the calls are made...
    print( '[ Test Class ] Get x = ' + str( _value ) )

    ## Return the value - we are a getter afterall...
    return _value


##
## Define the setter function for x...
##
@x.setter
def x( self, _value = None ):
    ## Debugging - so you can see the order the calls are made...
    print( '[ Test Class ] Set x = ' + str( _value ) )

    ## This is to show the setter function works.... If the value is above 0, set it to a negative value... otherwise keep it as is ( 0 is the only non-negative number, it can't be negative or positive anyway )
    if ( _value > 0 ):
        self.__x = -_value
    else:
        self.__x = _value


##
## Define the deleter function for x...
##
@x.deleter
def x( self ):
    ## Unload the assignment / data for x
    if ( self.__x != None ):
        del self.__x


##
## To String / Output Function for the class - this will show the property value for each property we add...
##
def __str__( self ):
    ## Output the x property data...
    print( '[ x ] ' + str( self.x ) )


    ## Return a new line - technically we should return a string so it can be printed where we want it, instead of printed early if _data = str( C( ) ) is used....
    return '\n'

##
##
##
_test = GetterSetterExample( )
print( _test )

## For some reason the deleter isn't being called...
del _test.x

Basically, the same as the C( object ) example except I’m using x instead… I also don’t initialize in __init – … well.. I do, but it can be removed because __x is defined as part of the class….

The output is:

[ Test Class ] Set x = 1234
[ Test Class ] Get x = -1234
[ x ] -1234

and if I comment out the self.x = 1234 in init then the output is:

[ Test Class ] Get x = None
[ x ] None

and if I set the _default = None to _default = 0 in the getter function ( as all getters should have a default value but it isn’t passed in by the property values from what I’ve seen so you can define it here, and it actually isn’t bad because you can define the default once and use it everywhere ) ie: def x( self, _default = 0 ):

[ Test Class ] Get x = 0
[ x ] 0

Note: The getter logic is there just to have the value be manipulated by it to ensure it is manipulated by it – the same for the print statements…

Note: I’m used to Lua and being able to dynamically create 10+ helpers when I call a single function and I made something similar for Python without using properties and it works to a degree, but, even though the functions are being created before being used, there are still issues at times with them being called prior to being created which is strange as it isn’t coded that way… I prefer the flexibility of Lua meta-tables and the fact I can use actual setters / getters instead of essentially directly accessing a variable… I do like how quickly some things can be built with Python though – for instance gui programs. although one I am designing may not be possible without a lot of additional libraries – if I code it in AutoHotkey I can directly access the dll calls I need, and the same can be done in Java, C#, C++, and more – maybe I haven’t found the right thing yet but for that project I may switch from Python..

Note: The code output in this forum is broken – I had to add spaces to the first part of the code for it to work – when copy / pasting ensure you convert all spaces to tabs…. I use tabs for Python because in a file which is 10,000 lines the filesize can be 512KB to 1MB with spaces and 100 to 200KB with tabs which equates to a massive difference for file size, and reduction in processing time…

Tabs can also be adjusted per user – so if you prefer 2 spaces width, 4, 8 or whatever you can do it meaning it is thoughtful for developers with eye-sight deficits.

Note: All of the functions defined in the class aren’t indented properly because of a bug in the forum software – ensure you indent it if you copy / paste


回答 13

一句话:对我来说,对于Python 2.x,@property当我不继承自object

class A():
    pass

但在以下情况下有效:

class A(object):
    pass

对于Python 3,始终有效。

One remark: for me, for Python 2.x, @property didn’t work as advertised when I didn’t inherit from object:

class A():
    pass

but worked when:

class A(object):
    pass

for Python 3, worked always.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。