>>> x =5>>>1< x <10True>>>10< x <20False>>> x <10< x*10<100True>>>10> x <=9True>>>5== x >4True
如果您以为它在做1 < x,它显示为True,然后比较True < 10,它也是True,那么不,那实际上不是什么事情(请参阅最后一个示例。)它实际上是翻译成1 < x and x < 10,和x < 10 and 10 < x * 10 and x*10 < 100,但键入和每个输入较少该术语仅评估一次。
>>> x = 5
>>> 1 < x < 10
True
>>> 10 < x < 20
False
>>> x < 10 < x*10 < 100
True
>>> 10 > x <= 9
True
>>> 5 == x > 4
True
In case you’re thinking it’s doing 1 < x, which comes out as True, and then comparing True < 10, which is also True, then no, that’s really not what happens (see the last example.) It’s really translating into 1 < x and x < 10, and x < 10 and 10 < x * 10 and x*10 < 100, but with less typing and each term is only evaluated once.
>>> re.compile("""
^ # start of a line
\[font # the font tag
(?:=(?P<size> # optional [font=+size]
[-+][0-9]{1,2} # size specification
))?
\] # end of tag
(.*?) # text between the tags
\[/font\] # end of the tag
""", re.DEBUG|re.VERBOSE|re.DOTALL)
Get the python regex parse tree to debug your regex.
Regular expressions are a great feature of python, but debugging them can be a pain, and it’s all too easy to get a regex wrong.
Fortunately, python can print the regex parse tree, by passing the undocumented, experimental, hidden flag re.DEBUG (actually, 128) to re.compile.
>>> re.compile("^\[font(?:=(?P<size>[-+][0-9]{1,2}))?\](.*?)[/font]",
re.DEBUG)
at at_beginning
literal 91
literal 102
literal 111
literal 110
literal 116
max_repeat 0 1
subpattern None
literal 61
subpattern 1
in
literal 45
literal 43
max_repeat 1 2
in
range (48, 57)
literal 93
subpattern 2
min_repeat 0 65535
any None
in
literal 47
literal 102
literal 111
literal 110
literal 116
Once you understand the syntax, you can spot your errors. There we can see that I forgot to escape the [] in [/font].
Of course you can combine it with whatever flags you want, like commented regexes:
>>> re.compile("""
^ # start of a line
\[font # the font tag
(?:=(?P<size> # optional [font=+size]
[-+][0-9]{1,2} # size specification
))?
\] # end of tag
(.*?) # text between the tags
\[/font\] # end of the tag
""", re.DEBUG|re.VERBOSE|re.DOTALL)
回答 2
枚举
用enumerate包装一个可迭代对象,它将产生该项目及其索引。
例如:
>>> a =['a','b','c','d','e']>>>for index, item in enumerate(a):print index, item...0 a1 b2 c3 d4 e>>>
def mygen():"""Yield 5 until something else is passed back via send()"""
a =5whileTrue:
f =(yield a)#yield a and possibly get f in returnif f isnotNone:
a = f #store the new value
您可以:
>>> g = mygen()>>> g.next()5>>> g.next()5>>> g.send(7)#we send this back to the generator7>>> g.next()#now it will yield 7 until we send something else7
def mygen():
"""Yield 5 until something else is passed back via send()"""
a = 5
while True:
f = (yield a) #yield a and possibly get f in return
if f is not None:
a = f #store the new value
You can:
>>> g = mygen()
>>> g.next()
5
>>> g.next()
5
>>> g.send(7) #we send this back to the generator
7
>>> g.next() #now it will yield 7 until we send something else
7
Decorators allow to wrap a function or method in another function that can add functionality, modify arguments or results, etc. You write decorators one line above the function definition, beginning with an “at” sign (@).
Example shows a print_args decorator that prints the decorated function’s arguments before calling it:
There is also a dict subclass in collections called defaultdict that does pretty much the same but calls a function without arguments for not existing items:
>>> from collections import defaultdict
>>> m = defaultdict(list)
>>> m["foo"].append(1)
>>> m["foo"].append(2)
>>> dict(m)
{'foo': [1, 2]}
I recommend converting such dicts to regular dicts before passing them to functions that don’t expect such subclasses. A lot of code uses d[a_key] and catches KeyErrors to check if an item exists which would add a new item to the dict.
回答 12
就地价值交换
>>> a =10>>> b =5>>> a, b
(10,5)>>> a, b = b, a
>>> a, b
(5,10)
>>> a = 10
>>> b = 5
>>> a, b
(10, 5)
>>> a, b = b, a
>>> a, b
(5, 10)
The right-hand side of the assignment is an expression that creates a new tuple. The left-hand side of the assignment immediately unpacks that (unreferenced) tuple to the names a and b.
After the assignment, the new tuple is unreferenced and marked for garbage collection, and the values bound to a and b have been swapped.
>>> p = re.compile(r'(?P<word>\b\w+\b)')>>> m = p.search('(((( Lots of punctuation )))')>>> m.group('word')'Lots'
您还可以冗长地编写一个正则表达式,而不必使用re.VERBOSE多亏了字符串文字连接。
>>> pattern =(..."^"# beginning of string..."M{0,4}"# thousands - 0 to 4 M's..."(CM|CD|D?C{0,3})"# hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),...# or 500-800 (D, followed by 0 to 3 C's)..."(XC|XL|L?X{0,3})"# tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),...# or 50-80 (L, followed by 0 to 3 X's)..."(IX|IV|V?I{0,3})"# ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),...# or 5-8 (V, followed by 0 to 3 I's)..."$"# end of string...)>>>print pattern
"^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$"
Introduced in PEP 343, a context manager is an object that acts as a run-time context for a suite of statements.
Since the feature makes use of new keywords, it is introduced gradually: it is available in Python 2.5 via the __future__ directive. Python 2.6 and above (including Python 3) has it available by default.
I have used the “with” statement a lot because I think it’s a very useful construct, here is a quick demo:
from __future__ import with_statement
with open('foo.txt', 'w') as f:
f.write('hello!')
What’s happening here behind the scenes, is that the “with” statement calls the special __enter__ and __exit__ methods on the file object. Exception details are also passed to __exit__ if any exception was raised from the with statement body, allowing for exception handling to happen there.
What this does for you in this particular case is that it guarantees that the file is closed when execution falls out of scope of the with suite, regardless if that occurs normally or whether an exception was thrown. It is basically a way of abstracting away common exception-handling code.
Other common use cases for this include locking with threads and database transactions.
Dictionaries have a ‘get()’ method. If you do d[‘key’] and key isn’t there, you get an exception. If you do d.get(‘key’), you get back None if ‘key’ isn’t there. You can add a second argument to get that item back instead of None, eg: d.get(‘key’, 0).
They’re the magic behind a whole bunch of core Python features.
When you use dotted access to look up a member (eg, x.y), Python first looks for the member in the instance dictionary. If it’s not found, it looks for it in the class dictionary. If it finds it in the class dictionary, and the object implements the descriptor protocol, instead of just returning it, Python executes it. A descriptor is any class that implements the __get__, __set__, or __delete__ methods.
Here’s how you’d implement your own (read-only) version of property using descriptors:
class Property(object):
def __init__(self, fget):
self.fget = fget
def __get__(self, obj, type):
if obj is None:
return self
return self.fget(obj)
and you’d use it just like the built-in property():
class MyClass(object):
@Property
def foo(self):
return "Foo!"
Descriptors are used in Python to implement properties, bound methods, static methods, class methods and slots, amongst other things. Understanding them makes it easy to see why a lot of things that previously looked like Python ‘quirks’ are the way they are.
Raymond Hettinger has an excellent tutorial that does a much better job of describing them than I do.
It does exactly what it sounds like: “assign 3 to x if y is 1, otherwise assign 2 to x”. Note that the parens are not necessary, but I like them for readability. You can also chain it if you have something more complicated:
x = 3 if (y == 1) else 2 if (y == -1) else 1
Though at a certain point, it goes a little too far.
Note that you can use if … else in any expression. For example:
(func1 if y == 1 else func2)(arg1, arg2)
Here func1 will be called if y is 1 and func2, otherwise. In both cases the corresponding function will be called with arguments arg1 and arg2.
def factorial(n):"""Return the factorial of n, an exact integer >= 0.
If the result is small enough to fit in an int, return an int.
Else return a long.
>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: n must be >= 0
Factorials of floats are OK, but the float must be an exact integer:
"""import math
ifnot n >=0:raiseValueError("n must be >= 0")if math.floor(n)!= n:raiseValueError("n must be exact integer")if n+1== n:# catch a value like 1e300raiseOverflowError("n too large")
result =1
factor =2while factor <= n:
result *= factor
factor +=1return result
def _test():import doctest
doctest.testmod()if __name__ =="__main__":
_test()
Doctest: documentation and unit-testing at the same time.
Example extracted from the Python documentation:
def factorial(n):
"""Return the factorial of n, an exact integer >= 0.
If the result is small enough to fit in an int, return an int.
Else return a long.
>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: n must be >= 0
Factorials of floats are OK, but the float must be an exact integer:
"""
import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")
if n+1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
result *= factor
factor += 1
return result
def _test():
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
回答 22
命名格式
%-formatting需要一个字典(也适用于%i /%s等。验证)。
>>>print"The %(foo)s is %(bar)i."%{'foo':'answer','bar':42}The answer is42.>>> foo, bar ='question',123>>>print"The %(foo)s is %(bar)i."% locals()The question is123.
% -formatting takes a dictionary (also applies %i/%s etc. validation).
>>> print "The %(foo)s is %(bar)i." % {'foo': 'answer', 'bar':42}
The answer is 42.
>>> foo, bar = 'question', 123
>>> print "The %(foo)s is %(bar)i." % locals()
The question is 123.
And since locals() is also a dictionary, you can simply pass that as a dict and have % -substitions from your local variables. I think this is frowned upon, but simplifies things..
New Style Formatting
>>> print("The {foo} is {bar}".format(foo='answer', bar=42))
To add more python modules (espcially 3rd party ones), most people seem to use PYTHONPATH environment variables or they add symlinks or directories in their site-packages directories. Another way, is to use *.pth files. Here’s the official python doc’s explanation:
“The most convenient way [to modify
python’s search path] is to add a path
configuration file to a directory
that’s already on Python’s path,
usually to the …/site-packages/
directory. Path configuration files
have an extension of .pth, and each
line must contain a single path that
will be appended to sys.path. (Because
the new paths are appended to
sys.path, modules in the added
directories will not override standard
modules. This means you can’t use this
mechanism for installing fixed
versions of standard modules.)”
回答 24
exceptionselse子句:
try:
put_4000000000_volts_through_it(parrot)exceptVoom:print"'E's pining!"else:print"This parrot is no more!"finally:
end_sketch()
try:
put_4000000000_volts_through_it(parrot)
except Voom:
print "'E's pining!"
else:
print "This parrot is no more!"
finally:
end_sketch()
The use of the else clause is better than adding additional code to the try clause because it avoids accidentally catching an exception that wasn’t raised by the code being protected by the try … except statement.
# Python 2 syntax
try:
some_operation()
except SomeError, e:
if is_fatal(e):
raise
handle_nonfatal(e)
# Python 3 syntax
try:
some_operation()
except SomeError as e:
if is_fatal(e):
raise
handle_nonfatal(e)
The ‘raise’ statement with no arguments inside an error handler tells Python to re-raise the exception with the original traceback intact, allowing you to say “oh, sorry, sorry, I didn’t mean to catch that, sorry, sorry.”
If you wish to print, store or fiddle with the original traceback, you can get it with sys.exc_info(), and printing it like Python would is done with the ‘traceback’ module.
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea — let’s do more of those!
Nested list comprehensions and generator expressions:
[(i,j) for i in range(3) for j in range(i) ]
((i,j) for i in range(4) for j in range(i) )
These can replace huge chunks of nested-loop code.
回答 29
set内置运算符重载:
>>> a = set([1,2,3,4])>>> b = set([3,4,5,6])>>> a | b # Union{1,2,3,4,5,6}>>> a & b # Intersection{3,4}>>> a < b # SubsetFalse>>> a - b # Difference{1,2}>>> a ^ b # Symmetric Difference{1,2,5,6}
>>> a = set([1,2,3,4])
>>> b = set([3,4,5,6])
>>> a | b # Union
{1, 2, 3, 4, 5, 6}
>>> a & b # Intersection
{3, 4}
>>> a < b # Subset
False
>>> a - b # Difference
{1, 2}
>>> a ^ b # Symmetric Difference
{1, 2, 5, 6}
More detail from the standard library reference: Set Types