问题:Python,计算列表差异
在Python中,计算两个列表之间差异的最佳方法是什么?
例
A = [1,2,3,4]
B = [2,5]
A - B = [1,3,4]
B - A = [5]
回答 0
使用set
,如果你不关心项目的顺序或重复。如果您使用列表理解,请执行以下操作:
>>> def diff(first, second):
second = set(second)
return [item for item in first if item not in second]
>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>>
回答 1
如果顺序无关紧要,则可以简单地计算出设定差:
>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])
回答 2
你可以做一个
list(set(A)-set(B))
和
list(set(B)-set(A))
回答 3
一班轮:
diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)
要么:
diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)
回答 4
上面的例子简化了计算差异的问题。假设排序或重复数据删除无疑会更轻松地计算差异,但是如果您的比较无法提供这些假设,那么您将需要一个非平凡的diff算法实现。请参阅python标准库中的difflib。
from difflib import SequenceMatcher
squeeze=SequenceMatcher( None, A, B )
print "A - B = [%s]"%( reduce( lambda p,q: p+q,
map( lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes() ) ) ) )
A-B = [[1、3、4]]
回答 5
Python 2.7.3(默认,2014年2月27日,19:58:35)-IPython 1.1.0-timeit:(github gist)
def diff(a, b):
b = set(b)
return [aa for aa in a if aa not in b]
def set_diff(a, b):
return list(set(a) - set(b))
diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]
diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)
from difflib import SequenceMatcher
def squeezer(a, b):
squeeze = SequenceMatcher(None, a, b)
return reduce(lambda p,q: p+q, map(
lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes())))
结果:
# Small
a = range(10)
b = range(10/2)
timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop
timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop
timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop
timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop
timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop
# Medium
a = range(10**4)
b = range(10**4/2)
timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop
timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop
timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop
timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop
timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop
# Big
a = xrange(10**7)
b = xrange(10**7/2)
timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop
timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'
@ roman-bodnarchuk列表推导函数def diff(a,b)似乎更快。
回答 6
A = [1,2,3,4]
B = [2,5]
#A - B
x = list(set(A) - set(B))
#B - A
y = list(set(B) - set(A))
print x
print y
回答 7
您可能需要使用set
而不是list
。
回答 8
如果您希望差异递归地深入到列表中的项目,我为python编写了一个软件包: https //github.com/erasmose/deepdiff
安装
从PyPi安装:
pip install deepdiff
如果您是Python3,则还需要安装:
pip install future six
用法示例
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function
同一对象返回空
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{}
项目类型已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}
项目的价值已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'values_changed': ['root[2]: 2 ====>> 4']}
添加和/或删除项目
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
{'dic_item_added': ['root[5, 6]'],
'dic_item_removed': ['root[4]'],
'values_changed': ['root[2]: 2 ====>> 4']}
弦差异
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ 'root[2]: 2 ====>> 4',
"root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
root[4]['b']:
---
+++
@@ -1 +1 @@
-world
+world!
弦差异2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
root[4]['b']:
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
类型变更
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}
清单差异
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'list_removed': ["root[4]['b']: [3]"]}
列表差异2:请注意,它没有考虑顺序
>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ }
包含字典的列表:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}
回答 9
最简单的方法
使用set()。difference(set())
list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))
答案是 set([1])
回答 10
如果是字典列表,则完整列表理解解决set
方案会在解决方案提出时起作用
TypeError: unhashable type: 'dict'
测试用例
def diff(a, b):
return [aa for aa in a if aa not in b]
d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}
>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]
回答 11
如果需要,简单的代码可为您带来多个项目的不同:
a=[1,2,3,3,4]
b=[2,4]
tmp = copy.deepcopy(a)
for k in b:
if k in tmp:
tmp.remove(k)
print(tmp)
回答 12
在查看In-operator的TimeComplexity时,在最坏的情况下它与O(n)一起使用。即使是套装。
因此,比较两个数组时,TimeComplexity在最佳情况下为O(n),在最坏情况下为O(n ^ 2)。
在最佳和最差情况下可与O(n)一起使用的另一种(但不幸的是更复杂)的解决方案是:
# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
a_missing_in_b = []
ai = 0
bi = 0
a = sorted(a, callback)
b = sorted(b, callback)
while (ai < len(a)) and (bi < len(b)):
cmp = callback(a[ai], b[bi])
if cmp < 0:
a_missing_in_b.append(a[ai])
ai += 1
elif cmp > 0:
# Item b is missing in a
bi += 1
else:
# a and b intersecting on this item
ai += 1
bi += 1
# if a and b are not of same length, we need to add the remaining items
for ai in xrange(ai, len(a)):
a_missing_in_b.append(a[ai])
return a_missing_in_b
例如
>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]