问题:Python,计算列表差异

在Python中,计算两个列表之间差异的最佳方法是什么?

A = [1,2,3,4]
B = [2,5]

A - B = [1,3,4]
B - A = [5]

In Python, what is the best way to compute the difference between two lists?

example

A = [1,2,3,4]
B = [2,5]

A - B = [1,3,4]
B - A = [5]

回答 0

使用set,如果你不关心项目的顺序或重复。如果您使用列表理解,请执行以下操作:

>>> def diff(first, second):
        second = set(second)
        return [item for item in first if item not in second]

>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>> 

Use set if you don’t care about items order or repetition. Use list comprehensions if you do:

>>> def diff(first, second):
        second = set(second)
        return [item for item in first if item not in second]

>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>> 

回答 1

如果顺序无关紧要,则可以简单地计算出设定差:

>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])

If the order does not matter, you can simply calculate the set difference:

>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])

回答 2

你可以做一个

list(set(A)-set(B))

list(set(B)-set(A))

You can do a

list(set(A)-set(B))

and

list(set(B)-set(A))

回答 3

一班轮:

diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)

要么:

diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)

One liner:

diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)

Or:

diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)

回答 4

上面的例子简化了计算差异的问题。假设排序或重复数据删除无疑会更轻松地计算差异,但是如果您的比较无法提供这些假设,那么您将需要一个非平凡的diff算法实现。请参阅python标准库中的difflib。

from difflib import SequenceMatcher 

squeeze=SequenceMatcher( None, A, B )

print "A - B = [%s]"%( reduce( lambda p,q: p+q, 
                               map( lambda t: squeeze.a[t[1]:t[2]], 
                                    filter(lambda x:x[0]!='equal', 
                                           squeeze.get_opcodes() ) ) ) )

A-B = [[1、3、4]]

The above examples trivialized the problem of calculating differences. Assuming sorting or de-duplication definitely make it easier to compute the difference, but if your comparison cannot afford those assumptions then you’ll need a non-trivial implementation of a diff algorithm. See difflib in the python standard library.

#! /usr/bin/python2
from difflib import SequenceMatcher

A = [1,2,3,4]
B = [2,5]

squeeze=SequenceMatcher( None, A, B )

print "A - B = [%s]"%( reduce( lambda p,q: p+q,
                               map( lambda t: squeeze.a[t[1]:t[2]],
                                    filter(lambda x:x[0]!='equal',
                                           squeeze.get_opcodes() ) ) ) )

Or Python3…

#! /usr/bin/python3
from difflib import SequenceMatcher
from functools import reduce

A = [1,2,3,4]
B = [2,5]

squeeze=SequenceMatcher( None, A, B )

print( "A - B = [%s]"%( reduce( lambda p,q: p+q,
                               map( lambda t: squeeze.a[t[1]:t[2]],
                                    filter(lambda x:x[0]!='equal',
                                           squeeze.get_opcodes() ) ) ) ) )

Output:

A - B = [[1, 3, 4]]

回答 5

Python 2.7.3(默认,2014年2月27日,19:58:35)-IPython 1.1.0-timeit:(github gist)

def diff(a, b):
  b = set(b)
  return [aa for aa in a if aa not in b]

def set_diff(a, b):
  return list(set(a) - set(b))

diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]

diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)

from difflib import SequenceMatcher
def squeezer(a, b):
  squeeze = SequenceMatcher(None, a, b)
  return reduce(lambda p,q: p+q, map(
    lambda t: squeeze.a[t[1]:t[2]],
      filter(lambda x:x[0]!='equal',
        squeeze.get_opcodes())))

结果:

# Small
a = range(10)
b = range(10/2)

timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop

timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop

timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop

timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop

timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop

# Medium
a = range(10**4)
b = range(10**4/2)

timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop

timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop

timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop

timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop

timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop

# Big
a = xrange(10**7)
b = xrange(10**7/2)

timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop

timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop

timeit[diff_lamb_filter(a, b)]
# too long to wait for

timeit[diff_lamb_filter(a, b)]
# too long to wait for

timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'

@ roman-bodnarchuk列表推导函数def diff(a,b)似乎更快。

Python 2.7.3 (default, Feb 27 2014, 19:58:35) – IPython 1.1.0 – timeit: (github gist)

def diff(a, b):
  b = set(b)
  return [aa for aa in a if aa not in b]

def set_diff(a, b):
  return list(set(a) - set(b))

diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]

diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)

from difflib import SequenceMatcher
def squeezer(a, b):
  squeeze = SequenceMatcher(None, a, b)
  return reduce(lambda p,q: p+q, map(
    lambda t: squeeze.a[t[1]:t[2]],
      filter(lambda x:x[0]!='equal',
        squeeze.get_opcodes())))

Results:

# Small
a = range(10)
b = range(10/2)

timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop

timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop

timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop

timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop

timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop

# Medium
a = range(10**4)
b = range(10**4/2)

timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop

timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop

timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop

timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop

timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop

# Big
a = xrange(10**7)
b = xrange(10**7/2)

timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop

timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop

timeit[diff_lamb_filter(a, b)]
# too long to wait for

timeit[diff_lamb_filter(a, b)]
# too long to wait for

timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'

@roman-bodnarchuk list comprehensions function def diff(a, b) seems to be faster.


回答 6

A = [1,2,3,4]
B = [2,5]

#A - B
x = list(set(A) - set(B))
#B - A 
y = list(set(B) - set(A))

print x
print y 
A = [1,2,3,4]
B = [2,5]

#A - B
x = list(set(A) - set(B))
#B - A 
y = list(set(B) - set(A))

print x
print y 

回答 7

您可能需要使用set而不是list

You would want to use a set instead of a list.


回答 8

如果您希望差异递归地深入到列表中的项目,我为python编写了一个软件包: https //github.com/erasmose/deepdiff

安装

从PyPi安装:

pip install deepdiff

如果您是Python3,则还需要安装:

pip install future six

用法示例

>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function

同一对象返回空

>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
    {}

项目类型已更改

>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
    {'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}

项目的价值已更改

>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
    {'values_changed': ['root[2]: 2 ====>> 4']}

添加和/或删除项目

>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
    {'dic_item_added': ['root[5, 6]'],
     'dic_item_removed': ['root[4]'],
     'values_changed': ['root[2]: 2 ====>> 4']}

弦差异

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'values_changed': [ 'root[2]: 2 ====>> 4',
                          "root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
    root[4]['b']:
    --- 
    +++ 
    @@ -1 +1 @@
    -world
    +world!

弦差异2

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
    root[4]['b']:
    --- 
    +++ 
    @@ -1,5 +1,4 @@
    -world!
    -Goodbye!
    +world
     1
     2
     End

类型变更

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}

清单差异

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'list_removed': ["root[4]['b']: [3]"]}

列表差异2:请注意,它没有考虑顺序

>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { }

包含字典的列表:

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'dic_item_removed': ["root[4]['b'][2][2]"],
      'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}

In case you want the difference recursively going deep into items of your list, I have written a package for python: https://github.com/erasmose/deepdiff

Installation

Install from PyPi:

pip install deepdiff

If you are Python3 you need to also install:

pip install future six

Example usage

>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function

Same object returns empty

>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
    {}

Type of an item has changed

>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
    {'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}

Value of an item has changed

>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
    {'values_changed': ['root[2]: 2 ====>> 4']}

Item added and/or removed

>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
    {'dic_item_added': ['root[5, 6]'],
     'dic_item_removed': ['root[4]'],
     'values_changed': ['root[2]: 2 ====>> 4']}

String difference

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'values_changed': [ 'root[2]: 2 ====>> 4',
                          "root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
    root[4]['b']:
    --- 
    +++ 
    @@ -1 +1 @@
    -world
    +world!

String difference 2

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
    root[4]['b']:
    --- 
    +++ 
    @@ -1,5 +1,4 @@
    -world!
    -Goodbye!
    +world
     1
     2
     End

Type change

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}

List difference

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'list_removed': ["root[4]['b']: [3]"]}

List difference 2: Note that it DOES NOT take order into account

>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { }

List that contains dictionary:

>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
    { 'dic_item_removed': ["root[4]['b'][2][2]"],
      'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}

回答 9

最简单的方法

使用set()。difference(set())

list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))

答案是 set([1])

most simple way,

use set().difference(set())

list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))

answer is set([1])


回答 10

如果是字典列表,则完整列表理解解决set方案会在解决方案提出时起作用

TypeError: unhashable type: 'dict'

测试用例

def diff(a, b):
    return [aa for aa in a if aa not in b]

d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}

>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]

In case of a list of dictionaries, the full list comprehension solution works while the set solution raises

TypeError: unhashable type: 'dict'

Test Case

def diff(a, b):
    return [aa for aa in a if aa not in b]

d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}

>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]

回答 11

如果需要,简单的代码可为您带来多个项目的不同:

a=[1,2,3,3,4]
b=[2,4]
tmp = copy.deepcopy(a)
for k in b:
    if k in tmp:
        tmp.remove(k)
print(tmp)

Simple code that gives you the difference with multiple items if you want that:

a=[1,2,3,3,4]
b=[2,4]
tmp = copy.deepcopy(a)
for k in b:
    if k in tmp:
        tmp.remove(k)
print(tmp)

回答 12

在查看In-operator的TimeComplexity时,在最坏的情况下它与O(n)一起使用。即使是套装。

因此,比较两个数组时,TimeComplexity在最佳情况下为O(n),在最坏情况下为O(n ^ 2)。

在最佳和最差情况下可与O(n)一起使用的另一种(但不幸的是更复杂)的解决方案是:

# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
  a_missing_in_b = []
  ai = 0
  bi = 0

  a = sorted(a, callback)
  b = sorted(b, callback)

  while (ai < len(a)) and (bi < len(b)):

    cmp = callback(a[ai], b[bi])
    if cmp < 0:
      a_missing_in_b.append(a[ai])
      ai += 1
    elif cmp > 0:
      # Item b is missing in a
      bi += 1
    else:
      # a and b intersecting on this item
      ai += 1
      bi += 1

  # if a and b are not of same length, we need to add the remaining items
  for ai in xrange(ai, len(a)):
    a_missing_in_b.append(a[ai])


  return a_missing_in_b

例如

>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]

When having a look at TimeComplexity of In-operator, in worst case it works with O(n). Even for Sets.

So when comparing two arrays we’ll have a TimeComplexity of O(n) in best case and O(n^2) in worst case.

An alternative (but unfortunately more complex) solution, which works with O(n) in best and worst case is this one:

# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
  a_missing_in_b = []
  ai = 0
  bi = 0

  a = sorted(a, callback)
  b = sorted(b, callback)

  while (ai < len(a)) and (bi < len(b)):

    cmp = callback(a[ai], b[bi])
    if cmp < 0:
      a_missing_in_b.append(a[ai])
      ai += 1
    elif cmp > 0:
      # Item b is missing in a
      bi += 1
    else:
      # a and b intersecting on this item
      ai += 1
      bi += 1

  # if a and b are not of same length, we need to add the remaining items
  for ai in xrange(ai, len(a)):
    a_missing_in_b.append(a[ai])


  return a_missing_in_b

e.g.

>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。