问题:Python:defaultdict的defaultdict?

有没有一种方法可以defaultdict(defaultdict(int))使以下代码正常工作?

for x in stuff:
    d[x.a][x.b] += x.c_int

d需要临时构建,具体取决于x.ax.b元素。

我可以使用:

for x in stuff:
    d[x.a,x.b] += x.c_int

但后来我将无法使用:

d.keys()
d[x.a].keys()

Is there a way to have a defaultdict(defaultdict(int)) in order to make the following code work?

for x in stuff:
    d[x.a][x.b] += x.c_int

d needs to be built ad-hoc, depending on x.a and x.b elements.

I could use:

for x in stuff:
    d[x.a,x.b] += x.c_int

but then I wouldn’t be able to use:

d.keys()
d[x.a].keys()

回答 0

是这样的:

defaultdict(lambda: defaultdict(int))

当您尝试访问不存在的键时,将调用的参数defaultdict(在这种情况下为lambda: defaultdict(int))。它的返回值将设置为该密钥的新值,这意味着在我们的情况下,d[Key_doesnt_exist]将为defaultdict(int)

如果尝试从最后一个defaultdict访问密钥,即d[Key_doesnt_exist][Key_doesnt_exist]它将返回0,这是最后一个defaultdict的参数的返回值int()

Yes like this:

defaultdict(lambda: defaultdict(int))

The argument of a defaultdict (in this case is lambda: defaultdict(int)) will be called when you try to access a key that doesn’t exist. The return value of it will be set as the new value of this key, which means in our case the value of d[Key_doesnt_exist] will be defaultdict(int).

If you try to access a key from this last defaultdict i.e. d[Key_doesnt_exist][Key_doesnt_exist] it will return 0, which is the return value of the argument of the last defaultdict i.e. int().


回答 1

defaultdict构造函数的参数是用于构建新元素的函数。因此,让我们使用lambda!

>>> from collections import defaultdict
>>> d = defaultdict(lambda : defaultdict(int))
>>> print d[0]
defaultdict(<type 'int'>, {})
>>> print d[0]["x"]
0

从Python 2.7开始,使用Counter有了一个更好的解决方案

>>> from collections import Counter
>>> c = Counter()
>>> c["goodbye"]+=1
>>> c["and thank you"]=42
>>> c["for the fish"]-=5
>>> c
Counter({'and thank you': 42, 'goodbye': 1, 'for the fish': -5})

一些额外功能

>>> c.most_common()[:2]
[('and thank you', 42), ('goodbye', 1)]

有关更多信息,请参见PyMOTW-集合-容器数据类型Python文档-集合

The parameter to the defaultdict constructor is the function which will be called for building new elements. So let’s use a lambda !

>>> from collections import defaultdict
>>> d = defaultdict(lambda : defaultdict(int))
>>> print d[0]
defaultdict(<type 'int'>, {})
>>> print d[0]["x"]
0

Since Python 2.7, there’s an even better solution using Counter:

>>> from collections import Counter
>>> c = Counter()
>>> c["goodbye"]+=1
>>> c["and thank you"]=42
>>> c["for the fish"]-=5
>>> c
Counter({'and thank you': 42, 'goodbye': 1, 'for the fish': -5})

Some bonus features

>>> c.most_common()[:2]
[('and thank you', 42), ('goodbye', 1)]

For more information see PyMOTW – Collections – Container data types and Python Documentation – collections


回答 2

我发现使用起来稍微更优雅partial

import functools
dd_int = functools.partial(defaultdict, int)
defaultdict(dd_int)

当然,这与lambda相同。

I find it slightly more elegant to use partial:

import functools
dd_int = functools.partial(defaultdict, int)
defaultdict(dd_int)

Of course, this is the same as a lambda.


回答 3

作为参考,可以通过以下方式实现通用的嵌套defaultdict工厂方法:

from collections import defaultdict
from functools import partial
from itertools import repeat


def nested_defaultdict(default_factory, depth=1):
    result = partial(defaultdict, default_factory)
    for _ in repeat(None, depth - 1):
        result = partial(defaultdict, result)
    return result()

深度定义了default_factory使用中定义的类型之前嵌套字典的数量。例如:

my_dict = nested_defaultdict(list, 3)
my_dict['a']['b']['c'].append('e')

For reference, it’s possible to implement a generic nested defaultdict factory method through:

from collections import defaultdict
from functools import partial
from itertools import repeat


def nested_defaultdict(default_factory, depth=1):
    result = partial(defaultdict, default_factory)
    for _ in repeat(None, depth - 1):
        result = partial(defaultdict, result)
    return result()

The depth defines the number of nested dictionary before the type defined in default_factory is used. For example:

my_dict = nested_defaultdict(list, 3)
my_dict['a']['b']['c'].append('e')

回答 4

先前的答案已经解决了如何制作两级或n级defaultdict。在某些情况下,您需要无限个:

def ddict():
    return defaultdict(ddict)

用法:

>>> d = ddict()
>>> d[1]['a'][True] = 0.5
>>> d[1]['b'] = 3
>>> import pprint; pprint.pprint(d)
defaultdict(<function ddict at 0x7fcac68bf048>,
            {1: defaultdict(<function ddict at 0x7fcac68bf048>,
                            {'a': defaultdict(<function ddict at 0x7fcac68bf048>,
                                              {True: 0.5}),
                             'b': 3})})

Previous answers have addressed how to make a two-levels or n-levels defaultdict. In some cases you want an infinite one:

def ddict():
    return defaultdict(ddict)

Usage:

>>> d = ddict()
>>> d[1]['a'][True] = 0.5
>>> d[1]['b'] = 3
>>> import pprint; pprint.pprint(d)
defaultdict(<function ddict at 0x7fcac68bf048>,
            {1: defaultdict(<function ddict at 0x7fcac68bf048>,
                            {'a': defaultdict(<function ddict at 0x7fcac68bf048>,
                                              {True: 0.5}),
                             'b': 3})})

回答 5

其他人已经正确回答了您如何使以下各项正常工作的问题:

for x in stuff:
    d[x.a][x.b] += x.c_int

一种替代方法是使用元组作为键:

d = defaultdict(int)
for x in stuff:
    d[x.a,x.b] += x.c_int
    # ^^^^^^^ tuple key

这种方法的好处是它很简单并且可以轻松扩展。如果您需要三个层次的映射,只需使用一个三项元组作为键。

Others have answered correctly your question of how to get the following to work:

for x in stuff:
    d[x.a][x.b] += x.c_int

An alternative would be to use tuples for keys:

d = defaultdict(int)
for x in stuff:
    d[x.a,x.b] += x.c_int
    # ^^^^^^^ tuple key

The nice thing about this approach is that it is simple and can be easily expanded. If you need a mapping three levels deep, just use a three item tuple for the key.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。