问题:与Project Euler的速度比较:C,Python,Erlang,Haskell
我已经采取了问题#12从项目欧拉作为编程锻炼和比较我的(肯定不是最优的)实现在C,Python和Erlang和Haskell的。为了获得更高的执行时间,我搜索的第一个三角形数的除数大于1000,而不是原始问题中所述的500。
结果如下:
C:
lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320
real 0m11.074s
user 0m11.070s
sys 0m0.000s
Python:
lorenzo@enzo:~/erlang$ time ./euler12.py
842161320
real 1m16.632s
user 1m16.370s
sys 0m0.250s
带有PyPy的Python:
lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py
842161320
real 0m13.082s
user 0m13.050s
sys 0m0.020s
Erlang:
lorenzo@enzo:~/erlang$ erlc euler12.erl
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]
Eshell V5.7.4 (abort with ^G)
1> 842161320
real 0m48.259s
user 0m48.070s
sys 0m0.020s
Haskell:
lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx
842161320
real 2m37.326s
user 2m37.240s
sys 0m0.080s
摘要:
- C:100%
- Python:692%(使用PyPy时为118%)
- Erlang:436%(135%感谢RichardC)
- 哈斯克尔:1421%
我认为C具有很大的优势,因为它使用long进行计算,而不使用其他任意三个整数。另外,它不需要先加载运行时(其他加载项吗?)。
问题1:
Erlang,Python和Haskell是否会由于使用任意长度的整数而导致速度降低,或者只要值小于,它们是否会失去速度MAXINT
?
问题2:
为什么Haskell这么慢?是否有编译器标志可以使您刹车?或者它是我的实现?(后者很有可能是因为Haskell是一本对我有七个印章的书。)
问题3:
您能否为我提供一些提示,说明如何在不改变因素确定方式的情况下优化这些实现?以任何方式进行优化:对语言更好,更快,更“原生”。
编辑:
问题4:
我的功能实现是否允许LCO(最后一次调用优化,又称为尾部递归消除),从而避免在调用堆栈上添加不必要的帧?
尽管我不得不承认我的Haskell和Erlang知识非常有限,但我确实试图在四种语言中尽可能地实现相同的算法。
使用的源代码:
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square;
int count = isquare == square ? -1 : 0;
long candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
#! /usr/bin/env python3.2
import math
def factorCount (n):
square = math.sqrt (n)
isquare = int (square)
count = -1 if isquare == square else 0
for candidate in range (1, isquare + 1):
if not n % candidate: count += 2
return count
triangle = 1
index = 1
while factorCount (triangle) < 1001:
index += 1
triangle += index
print (triangle)
-module (euler12).
-compile (export_all).
factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).
factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
factorCount (Number, Sqrt, Candidate, Count) ->
case Number rem Candidate of
0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
_ -> factorCount (Number, Sqrt, Candidate + 1, Count)
end.
nextTriangle (Index, Triangle) ->
Count = factorCount (Triangle),
if
Count > 1000 -> Triangle;
true -> nextTriangle (Index + 1, Triangle + Index + 1)
end.
solve () ->
io:format ("~p~n", [nextTriangle (1, 1) ] ),
halt (0).
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' number sqrt candidate count
| fromIntegral candidate > sqrt = count
| number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
| otherwise = factorCount' number sqrt (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
I have taken Problem #12 from Project Euler as a programming exercise and to compare my (surely not optimal) implementations in C, Python, Erlang and Haskell. In order to get some higher execution times, I search for the first triangle number with more than 1000 divisors instead of 500 as stated in the original problem.
The result is the following:
C:
lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320
real 0m11.074s
user 0m11.070s
sys 0m0.000s
Python:
lorenzo@enzo:~/erlang$ time ./euler12.py
842161320
real 1m16.632s
user 1m16.370s
sys 0m0.250s
Python with PyPy:
lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py
842161320
real 0m13.082s
user 0m13.050s
sys 0m0.020s
Erlang:
lorenzo@enzo:~/erlang$ erlc euler12.erl
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]
Eshell V5.7.4 (abort with ^G)
1> 842161320
real 0m48.259s
user 0m48.070s
sys 0m0.020s
Haskell:
lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx
842161320
real 2m37.326s
user 2m37.240s
sys 0m0.080s
Summary:
- C: 100%
- Python: 692% (118% with PyPy)
- Erlang: 436% (135% thanks to RichardC)
- Haskell: 1421%
I suppose that C has a big advantage as it uses long for the calculations and not arbitrary length integers as the other three. Also it doesn’t need to load a runtime first (Do the others?).
Question 1:
Do Erlang, Python and Haskell lose speed due to using arbitrary length integers or don’t they as long as the values are less than MAXINT
?
Question 2:
Why is Haskell so slow? Is there a compiler flag that turns off the brakes or is it my implementation? (The latter is quite probable as Haskell is a book with seven seals to me.)
Question 3:
Can you offer me some hints how to optimize these implementations without changing the way I determine the factors? Optimization in any way: nicer, faster, more “native” to the language.
EDIT:
Question 4:
Do my functional implementations permit LCO (last call optimization, a.k.a tail recursion elimination) and hence avoid adding unnecessary frames onto the call stack?
I really tried to implement the same algorithm as similar as possible in the four languages, although I have to admit that my Haskell and Erlang knowledge is very limited.
Source codes used:
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square;
int count = isquare == square ? -1 : 0;
long candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
#! /usr/bin/env python3.2
import math
def factorCount (n):
square = math.sqrt (n)
isquare = int (square)
count = -1 if isquare == square else 0
for candidate in range (1, isquare + 1):
if not n % candidate: count += 2
return count
triangle = 1
index = 1
while factorCount (triangle) < 1001:
index += 1
triangle += index
print (triangle)
-module (euler12).
-compile (export_all).
factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).
factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
factorCount (Number, Sqrt, Candidate, Count) ->
case Number rem Candidate of
0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
_ -> factorCount (Number, Sqrt, Candidate + 1, Count)
end.
nextTriangle (Index, Triangle) ->
Count = factorCount (Triangle),
if
Count > 1000 -> Triangle;
true -> nextTriangle (Index + 1, Triangle + Index + 1)
end.
solve () ->
io:format ("~p~n", [nextTriangle (1, 1) ] ),
halt (0).
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' number sqrt candidate count
| fromIntegral candidate > sqrt = count
| number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
| otherwise = factorCount' number sqrt (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
回答 0
使用GHC 7.0.3
,gcc 4.4.6
,Linux 2.6.29
一个x86_64的Core2双核(2.5GHz的)机器上,编译使用ghc -O2 -fllvm -fforce-recomp
用于Haskell和gcc -O3 -lm
为C.
- 您的C例程运行8.4秒(比您的运行速度快,原因可能是
-O3
)
- Haskell解决方案可在36秒内运行(由于显示
-O2
标记)
- 您的
factorCount'
代码未明确输入且默认为Integer
(感谢Daniel在这里纠正我的误诊!)。使用给出显式类型签名(无论如何都是标准做法)Int
,时间更改为11.1秒
- 在
factorCount'
你不必要的呼唤fromIntegral
。修复不会导致任何变化(编译器很聪明,对您来说很幸运)。
- 您
mod
在rem
更快更充分的地方使用了。这将时间更改为8.5秒。
factorCount'
不断应用两个永不更改的自变量(number
,sqrt
)。工人/包装工人的转型为我们提供了:
$ time ./so
842161320
real 0m7.954s
user 0m7.944s
sys 0m0.004s
没错,7.95秒。始终比C解决方案快半秒。没有-fllvm
标记,我仍然会收到消息8.182 seconds
,因此NCG后端在这种情况下也表现良好。
结论:Haskell很棒。
结果代码
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' :: Int -> Int -> Int -> Int -> Int
factorCount' number sqrt candidate0 count0 = go candidate0 count0
where
go candidate count
| candidate > sqrt = count
| number `rem` candidate == 0 = go (candidate + 1) (count + 2)
| otherwise = go (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
编辑:现在我们已经探索了,让我们解决问题
问题1:erlang,python和haskell是否由于使用任意长度的整数而失去速度,还是只要它们的值小于MAXINT,它们就不会丢失吗?
在Haskell中,使用Integer
速度慢于Int
但慢多少取决于所执行的计算。幸运的是(对于64位计算机)Int
就足够了。出于可移植性的考虑,您可能应该重写我的代码以使用Int64
或Word64
(C不是唯一带有的语言long
)。
问题2:为什么haskell这么慢?是否有编译器标志可以使您刹车,或者它是我的实现?(后者很可能因为haskell是一本对我有七个印章的书。)
问题3:能否为我提供一些提示,说明如何在不改变因素确定方式的情况下优化这些实现?以任何方式进行优化:对语言更好,更快,更“原生”。
这就是我上面回答的。答案是
- 0)通过使用优化
-O2
- 1)尽可能使用快速(特别是:不可装箱)类型
- 2)
rem
不是mod
(经常被遗忘的优化),并且
- 3)worker / wrapper转换(也许是最常见的优化)。
问题4:我的功能实现是否允许LCO,从而避免在调用堆栈中添加不必要的帧?
是的,这不是问题。做得好,很高兴您考虑了这一点。
Using GHC 7.0.3
, gcc 4.4.6
, Linux 2.6.29
on an x86_64 Core2 Duo (2.5GHz) machine, compiling using ghc -O2 -fllvm -fforce-recomp
for Haskell and gcc -O3 -lm
for C.
- Your C routine runs in 8.4 seconds (faster than your run probably because of
-O3
)
- The Haskell solution runs in 36 seconds (due to the
-O2
flag)
- Your
factorCount'
code isn’t explicitly typed and defaulting to Integer
(thanks to Daniel for correcting my misdiagnosis here!). Giving an explicit type signature (which is standard practice anyway) using Int
and the time changes to 11.1 seconds
- in
factorCount'
you have needlessly called fromIntegral
. A fix results in no change though (the compiler is smart, lucky for you).
- You used
mod
where rem
is faster and sufficient. This changes the time to 8.5 seconds.
factorCount'
is constantly applying two extra arguments that never change (number
, sqrt
). A worker/wrapper transformation gives us:
$ time ./so
842161320
real 0m7.954s
user 0m7.944s
sys 0m0.004s
That’s right, 7.95 seconds. Consistently half a second faster than the C solution. Without the -fllvm
flag I’m still getting 8.182 seconds
, so the NCG backend is doing well in this case too.
Conclusion: Haskell is awesome.
Resulting Code
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' :: Int -> Int -> Int -> Int -> Int
factorCount' number sqrt candidate0 count0 = go candidate0 count0
where
go candidate count
| candidate > sqrt = count
| number `rem` candidate == 0 = go (candidate + 1) (count + 2)
| otherwise = go (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
EDIT: So now that we’ve explored that, lets address the questions
Question 1: Do erlang, python and haskell lose speed due to using
arbitrary length integers or don’t they as long as the values are less
than MAXINT?
In Haskell, using Integer
is slower than Int
but how much slower depends on the computations performed. Luckily (for 64 bit machines) Int
is sufficient. For portability sake you should probably rewrite my code to use Int64
or Word64
(C isn’t the only language with a long
).
Question 2: Why is haskell so slow? Is there a compiler flag that
turns off the brakes or is it my implementation? (The latter is quite
probable as haskell is a book with seven seals to me.)
Question 3: Can you offer me some hints how to optimize these
implementations without changing the way I determine the factors?
Optimization in any way: nicer, faster, more “native” to the language.
That was what I answered above. The answer was
- 0) Use optimization via
-O2
- 1) Use fast (notably: unbox-able) types when possible
- 2)
rem
not mod
(a frequently forgotten optimization) and
- 3) worker/wrapper transformation (perhaps the most common optimization).
Question 4: Do my functional implementations permit LCO and hence
avoid adding unnecessary frames onto the call stack?
Yes, that wasn’t the issue. Good work and glad you considered this.
回答 1
Erlang实现存在一些问题。作为以下内容的基准,我测得的未经修改的Erlang程序的执行时间为47.6秒,而C代码为12.7秒。
如果要运行计算密集型的Erlang代码,您应该做的第一件事就是使用本机代码。使用进行编译,erlc +native euler12
时间缩短至41.3秒。但是,这比这种代码的本机编译要低得多(仅为15%),问题是您使用-compile(export_all)
。这对于实验很有用,但是所有功能都可以从外部访问的事实导致本机编译器非常保守。(普通的BEAM仿真器不会受到太大影响。)用替换该声明可以-export([solve/0]).
提供更好的加速:31.5秒(比基线快将近35%)。
但是代码本身有一个问题:对于factorCount循环中的每个迭代,您都可以执行以下测试:
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
C代码不会执行此操作。通常,在同一代码的不同实现之间进行公平的比较可能比较棘手,特别是如果算法是数字的,因为您需要确保它们实际上在做相同的事情。尽管某个实现最终会达到相同的结果,但由于某个地方的某些类型转换而导致的一种实现中的轻微舍入错误可能会导致其执行的迭代次数要多于另一个实现。
为了消除这种可能的错误源(并消除每次迭代中的额外测试),我重新编写了factorCount函数,如下所示,该函数非常类似于C代码:
factorCount (N) ->
Sqrt = math:sqrt (N),
ISqrt = trunc(Sqrt),
if ISqrt == Sqrt -> factorCount (N, ISqrt, 1, -1);
true -> factorCount (N, ISqrt, 1, 0)
end.
factorCount (_N, ISqrt, Candidate, Count) when Candidate > ISqrt -> Count;
factorCount ( N, ISqrt, Candidate, Count) ->
case N rem Candidate of
0 -> factorCount (N, ISqrt, Candidate + 1, Count + 2);
_ -> factorCount (N, ISqrt, Candidate + 1, Count)
end.
此重写(no export_all
)和本机编译为我提供了以下运行时间:
$ erlc +native euler12.erl
$ time erl -noshell -s euler12 solve
842161320
real 0m19.468s
user 0m19.450s
sys 0m0.010s
与C代码相比,还算不错:
$ time ./a.out
842161320
real 0m12.755s
user 0m12.730s
sys 0m0.020s
考虑到Erlang根本不适合编写数字代码,在这样的程序上,它仅比C慢50%。
最后,关于您的问题:
问题1:erlang,python和haskell是否由于使用任意长度的整数而导致速度变慢,或者只要值小于MAXINT,它们是否会变慢?
是的,有点。在Erlang中,没有办法说“结合使用32/64位算术”,因此,除非编译器可以证明整数的某些界限(通常不能),否则它必须检查所有计算以查看是否可以将它们放入单个标记的单词中,或者是否必须将它们转换为堆分配的bignum。即使在运行时实际上没有使用大数,也必须执行这些检查。另一方面,这意味着您知道,如果您突然给它比以前更大的输入,该算法将永远不会因为意外的整数环绕而失败。
问题4:我的功能实现是否允许LCO,从而避免在调用堆栈中添加不必要的帧?
是的,您的Erlang代码在上次通话优化方面是正确的。
There are some problems with the Erlang implementation. As baseline for the following, my measured execution time for your unmodified Erlang program was 47.6 seconds, compared to 12.7 seconds for the C code.
The first thing you should do if you want to run computationally intensive Erlang code is to use native code. Compiling with erlc +native euler12
got the time down to 41.3 seconds. This is however a much lower speedup (just 15%) than expected from native compilation on this kind of code, and the problem is your use of -compile(export_all)
. This is useful for experimentation, but the fact that all functions are potentially reachable from the outside causes the native compiler to be very conservative. (The normal BEAM emulator is not that much affected.) Replacing this declaration with -export([solve/0]).
gives a much better speedup: 31.5 seconds (almost 35% from the baseline).
But the code itself has a problem: for each iteration in the factorCount loop, you perform this test:
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
The C code doesn’t do this. In general, it can be tricky to make a fair comparison between different implementations of the same code, and in particular if the algorithm is numerical, because you need to be sure that they are actually doing the same thing. A slight rounding error in one implementation due to some typecast somewhere may cause it to do many more iterations than the other even though both eventually reach the same result.
To eliminate this possible error source (and get rid of the extra test in each iteration), I rewrote the factorCount function as follows, closely modelled on the C code:
factorCount (N) ->
Sqrt = math:sqrt (N),
ISqrt = trunc(Sqrt),
if ISqrt == Sqrt -> factorCount (N, ISqrt, 1, -1);
true -> factorCount (N, ISqrt, 1, 0)
end.
factorCount (_N, ISqrt, Candidate, Count) when Candidate > ISqrt -> Count;
factorCount ( N, ISqrt, Candidate, Count) ->
case N rem Candidate of
0 -> factorCount (N, ISqrt, Candidate + 1, Count + 2);
_ -> factorCount (N, ISqrt, Candidate + 1, Count)
end.
This rewrite, no export_all
, and native compilation, gave me the following run time:
$ erlc +native euler12.erl
$ time erl -noshell -s euler12 solve
842161320
real 0m19.468s
user 0m19.450s
sys 0m0.010s
which is not too bad compared to the C code:
$ time ./a.out
842161320
real 0m12.755s
user 0m12.730s
sys 0m0.020s
considering that Erlang is not at all geared towards writing numerical code, being only 50% slower than C on a program like this is pretty good.
Finally, regarding your questions:
Question 1: Do erlang, python and haskell loose speed due to using arbitrary length integers or
don’t they as long as the values are less than MAXINT?
Yes, somewhat. In Erlang, there is no way of saying “use 32/64-bit arithmetic with wrap-around”, so unless the compiler can prove some bounds on your integers (and it usually can’t), it must check all computations to see if they can fit in a single tagged word or if it has to turn them into heap-allocated bignums. Even if no bignums are ever used in practice at runtime, these checks will have to be performed. On the other hand, that means you know that the algorithm will never fail because of an unexpected integer wraparound if you suddenly give it larger inputs than before.
Question 4: Do my functional implementations permit LCO and hence avoid adding unnecessary frames onto the call stack?
Yes, your Erlang code is correct with respect to last call optimization.
回答 2
关于Python优化,除了使用PyPy(在代码零更改的情况下实现相当不错的加速)之外,您还可以使用PyPy的翻译工具链来编译兼容RPython的版本,或者使用Cython来构建扩展模块,两者Cython模块比我的测试中的C版本要快,而Cython模块的速度几乎是后者的两倍。作为参考,我还包括C和PyPy基准测试结果:
C(与编译gcc -O3 -lm
)
% time ./euler12-c
842161320
./euler12-c 11.95s
user 0.00s
system 99%
cpu 11.959 total
PyPy 1.5
% time pypy euler12.py
842161320
pypy euler12.py
16.44s user
0.01s system
99% cpu 16.449 total
RPython(使用最新的PyPy修订版c2f583445aee
)
% time ./euler12-rpython-c
842161320
./euler12-rpy-c
10.54s user 0.00s
system 99%
cpu 10.540 total
Cython 0.15
% time python euler12-cython.py
842161320
python euler12-cython.py
6.27s user 0.00s
system 99%
cpu 6.274 total
RPython版本有几个关键更改。要转换为独立程序,您需要定义您的target
,在这种情况下为main
函数。它应该接受,sys.argv
因为它是唯一的参数,并且需要返回一个int。您可以使用translate.py对其进行翻译,% translate.py euler12-rpython.py
后者将转换为C并为您编译。
# euler12-rpython.py
import math, sys
def factorCount(n):
square = math.sqrt(n)
isquare = int(square)
count = -1 if isquare == square else 0
for candidate in xrange(1, isquare + 1):
if not n % candidate: count += 2
return count
def main(argv):
triangle = 1
index = 1
while factorCount(triangle) < 1001:
index += 1
triangle += index
print triangle
return 0
if __name__ == '__main__':
main(sys.argv)
def target(*args):
return main, None
Cython版本被重写为扩展模块_euler12.pyx
,我从普通的python文件导入并调用了该模块。在_euler12.pyx
本质上是相同的版本,有一些额外的静态类型声明。setup.py具有使用来构建扩展的普通样板python setup.py build_ext --inplace
。
# _euler12.pyx
from libc.math cimport sqrt
cdef int factorCount(int n):
cdef int candidate, isquare, count
cdef double square
square = sqrt(n)
isquare = int(square)
count = -1 if isquare == square else 0
for candidate in range(1, isquare + 1):
if not n % candidate: count += 2
return count
cpdef main():
cdef int triangle = 1, index = 1
while factorCount(triangle) < 1001:
index += 1
triangle += index
print triangle
# euler12-cython.py
import _euler12
_euler12.main()
# setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules = [Extension("_euler12", ["_euler12.pyx"])]
setup(
name = 'Euler12-Cython',
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)
老实说,我对RPython或Cython的经验很少,并对结果感到惊喜。如果您使用的是CPython,则在Cython扩展模块中编写CPU密集型代码似乎是优化程序的一种简便方法。
In regards to Python optimization, in addition to using PyPy (for pretty impressive speed-ups with zero change to your code), you could use PyPy’s translation toolchain to compile an RPython-compliant version, or Cython to build an extension module, both of which are faster than the C version in my testing, with the Cython module nearly twice as fast. For reference I include C and PyPy benchmark results as well:
C (compiled with gcc -O3 -lm
)
% time ./euler12-c
842161320
./euler12-c 11.95s
user 0.00s
system 99%
cpu 11.959 total
PyPy 1.5
% time pypy euler12.py
842161320
pypy euler12.py
16.44s user
0.01s system
99% cpu 16.449 total
RPython (using latest PyPy revision, c2f583445aee
)
% time ./euler12-rpython-c
842161320
./euler12-rpy-c
10.54s user 0.00s
system 99%
cpu 10.540 total
Cython 0.15
% time python euler12-cython.py
842161320
python euler12-cython.py
6.27s user 0.00s
system 99%
cpu 6.274 total
The RPython version has a couple of key changes. To translate into a standalone program you need to define your target
, which in this case is the main
function. It’s expected to accept sys.argv
as it’s only argument, and is required to return an int. You can translate it by using translate.py, % translate.py euler12-rpython.py
which translates to C and compiles it for you.
# euler12-rpython.py
import math, sys
def factorCount(n):
square = math.sqrt(n)
isquare = int(square)
count = -1 if isquare == square else 0
for candidate in xrange(1, isquare + 1):
if not n % candidate: count += 2
return count
def main(argv):
triangle = 1
index = 1
while factorCount(triangle) < 1001:
index += 1
triangle += index
print triangle
return 0
if __name__ == '__main__':
main(sys.argv)
def target(*args):
return main, None
The Cython version was rewritten as an extension module _euler12.pyx
, which I import and call from a normal python file. The _euler12.pyx
is essentially the same as your version, with some additional static type declarations. The setup.py has the normal boilerplate to build the extension, using python setup.py build_ext --inplace
.
# _euler12.pyx
from libc.math cimport sqrt
cdef int factorCount(int n):
cdef int candidate, isquare, count
cdef double square
square = sqrt(n)
isquare = int(square)
count = -1 if isquare == square else 0
for candidate in range(1, isquare + 1):
if not n % candidate: count += 2
return count
cpdef main():
cdef int triangle = 1, index = 1
while factorCount(triangle) < 1001:
index += 1
triangle += index
print triangle
# euler12-cython.py
import _euler12
_euler12.main()
# setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules = [Extension("_euler12", ["_euler12.pyx"])]
setup(
name = 'Euler12-Cython',
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)
I honestly have very little experience with either RPython or Cython, and was pleasantly surprised at the results. If you are using CPython, writing your CPU-intensive bits of code in a Cython extension module seems like a really easy way to optimize your program.
回答 3
问题3:您能否为我提供一些提示,说明如何在不改变因素确定方式的情况下优化这些实现?以任何方式进行优化:对语言更好,更快,更“原生”。
C实现是次优的(由Thomas M. DuBuisson暗示),该版本使用64位整数(即long数据类型)。稍后我将研究程序集列表,但经过深思熟虑的猜测,编译后的代码中存在一些内存访问,这使得使用64位整数的速度大大降低。这就是生成的代码(因为可以在SSE寄存器中容纳更少的64位整数,或者将双精度数舍入为64位整数的事实比较慢)。
这是修改后的代码(只需将int替换为long,并且我显式内联了factorCount,尽管我认为gcc -O3不需要这样做):
#include <stdio.h>
#include <math.h>
static inline int factorCount(int n)
{
double square = sqrt (n);
int isquare = (int)square;
int count = isquare == square ? -1 : 0;
int candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
int triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index++;
triangle += index;
}
printf ("%d\n", triangle);
}
运行+计时它给出:
$ gcc -O3 -lm -o euler12 euler12.c; time ./euler12
842161320
./euler12 2.95s user 0.00s system 99% cpu 2.956 total
作为参考,Thomas在前面的答案中的haskell实现给出:
$ ghc -O2 -fllvm -fforce-recomp euler12.hs; time ./euler12 [9:40]
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12 ...
842161320
./euler12 9.43s user 0.13s system 99% cpu 9.602 total
结论:ghc是一个很棒的编译器,它没有任何缺点,但是gcc通常会生成更快的代码。
Question 3: Can you offer me some hints how to optimize these implementations
without changing the way I determine the factors? Optimization in any
way: nicer, faster, more “native” to the language.
The C implementation is suboptimal (as hinted at by Thomas M. DuBuisson), the version uses 64-bit integers (i.e. long datatype). I’ll investigate the assembly listing later, but with an educated guess, there are some memory accesses going on in the compiled code, which make using 64-bit integers significantly slower. It’s that or generated code (be it the fact that you can fit less 64-bit ints in a SSE register or round a double to a 64-bit integer is slower).
Here is the modified code (simply replace long with int and I explicitly inlined factorCount, although I do not think that this is necessary with gcc -O3):
#include <stdio.h>
#include <math.h>
static inline int factorCount(int n)
{
double square = sqrt (n);
int isquare = (int)square;
int count = isquare == square ? -1 : 0;
int candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
int triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index++;
triangle += index;
}
printf ("%d\n", triangle);
}
Running + timing it gives:
$ gcc -O3 -lm -o euler12 euler12.c; time ./euler12
842161320
./euler12 2.95s user 0.00s system 99% cpu 2.956 total
For reference, the haskell implementation by Thomas in the earlier answer gives:
$ ghc -O2 -fllvm -fforce-recomp euler12.hs; time ./euler12 [9:40]
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12 ...
842161320
./euler12 9.43s user 0.13s system 99% cpu 9.602 total
Conclusion: Taking nothing away from ghc, its a great compiler, but gcc normally generates faster code.
回答 4
看一下这个博客。在过去的一年左右的时间里,他用Haskell和Python解决了一些Project Euler问题,并且他通常发现Haskell的速度要快得多。我认为在这些语言之间,它与您的流畅程度和编码风格有关。
说到Python速度,您使用的是错误的实现!尝试使用PyPy,对于这样的事情,您会发现它的运行速度要快得多。
Take a look at this blog. Over the past year or so he’s done a few of the Project Euler problems in Haskell and Python, and he’s generally found Haskell to be much faster. I think that between those languages it has more to do with your fluency and coding style.
When it comes to Python speed, you’re using the wrong implementation! Try PyPy, and for things like this you’ll find it to be much, much faster.
回答 5
通过使用Haskell软件包中的某些功能,可以大大加快Haskell的实现。在这种情况下,我使用了素数,它仅与“ cabal install primes”一起安装;)
import Data.Numbers.Primes
import Data.List
triangleNumbers = scanl1 (+) [1..]
nDivisors n = product $ map ((+1) . length) (group (primeFactors n))
answer = head $ filter ((> 500) . nDivisors) triangleNumbers
main :: IO ()
main = putStrLn $ "First triangle number to have over 500 divisors: " ++ (show answer)
时间:
您的原始程序:
PS> measure-command { bin\012_slow.exe }
TotalSeconds : 16.3807409
TotalMilliseconds : 16380.7409
改进的实施
PS> measure-command { bin\012.exe }
TotalSeconds : 0.0383436
TotalMilliseconds : 38.3436
如您所见,这台计算机在您运行16秒钟的同一台计算机上运行的时间为38毫秒:)
编译命令:
ghc -O2 012.hs -o bin\012.exe
ghc -O2 012_slow.hs -o bin\012_slow.exe
Your Haskell implementation could be greatly sped up by using some functions from Haskell packages.
In this case I used primes, which is just installed with ‘cabal install primes’ ;)
import Data.Numbers.Primes
import Data.List
triangleNumbers = scanl1 (+) [1..]
nDivisors n = product $ map ((+1) . length) (group (primeFactors n))
answer = head $ filter ((> 500) . nDivisors) triangleNumbers
main :: IO ()
main = putStrLn $ "First triangle number to have over 500 divisors: " ++ (show answer)
Timings:
Your original program:
PS> measure-command { bin\012_slow.exe }
TotalSeconds : 16.3807409
TotalMilliseconds : 16380.7409
Improved implementation
PS> measure-command { bin\012.exe }
TotalSeconds : 0.0383436
TotalMilliseconds : 38.3436
As you can see, this one runs in 38 milliseconds on the same machine where yours ran in 16 seconds :)
Compilation commands:
ghc -O2 012.hs -o bin\012.exe
ghc -O2 012_slow.hs -o bin\012_slow.exe
回答 6
纯娱乐。以下是更“原生”的Haskell实现:
import Control.Applicative
import Control.Monad
import Data.Either
import Math.NumberTheory.Powers.Squares
isInt :: RealFrac c => c -> Bool
isInt = (==) <$> id <*> fromInteger . round
intSqrt :: (Integral a) => a -> Int
--intSqrt = fromIntegral . floor . sqrt . fromIntegral
intSqrt = fromIntegral . integerSquareRoot'
factorize :: Int -> [Int]
factorize 1 = []
factorize n = first : factorize (quot n first)
where first = (!! 0) $ [a | a <- [2..intSqrt n], rem n a == 0] ++ [n]
factorize2 :: Int -> [(Int,Int)]
factorize2 = foldl (\ls@((val,freq):xs) y -> if val == y then (val,freq+1):xs else (y,1):ls) [(0,0)] . factorize
numDivisors :: Int -> Int
numDivisors = foldl (\acc (_,y) -> acc * (y+1)) 1 <$> factorize2
nextTriangleNumber :: (Int,Int) -> (Int,Int)
nextTriangleNumber (n,acc) = (n+1,acc+n+1)
forward :: Int -> (Int, Int) -> Either (Int, Int) (Int, Int)
forward k val@(n,acc) = if numDivisors acc > k then Left val else Right (nextTriangleNumber val)
problem12 :: Int -> (Int, Int)
problem12 n = (!!0) . lefts . scanl (>>=) (forward n (1,1)) . repeat . forward $ n
main = do
let (n,val) = problem12 1000
print val
使用 ghc -O3
,这可以在我的机器(1.73GHz Core i7)上持续运行0.55-0.58秒。
对于C版本,更有效的factorCount函数:
int factorCount (int n)
{
int count = 1;
int candidate,tmpCount;
while (n % 2 == 0) {
count++;
n /= 2;
}
for (candidate = 3; candidate < n && candidate * candidate < n; candidate += 2)
if (n % candidate == 0) {
tmpCount = 1;
do {
tmpCount++;
n /= candidate;
} while (n % candidate == 0);
count*=tmpCount;
}
if (n > 1)
count *= 2;
return count;
}
使用来将main中的longs更改为int gcc -O3 -lm
,这始终在0.31-0.35秒内运行。
如果利用第n个三角形数= n *(n + 1)/ 2,并且n和(n + 1)具有完全不同的素因式分解这一事实,这两个函数都可以运行得更快。可以乘以一半以找出整体的因素数量。以下:
int main ()
{
int triangle = 0,count1,count2 = 1;
do {
count1 = count2;
count2 = ++triangle % 2 == 0 ? factorCount(triangle+1) : factorCount((triangle+1)/2);
} while (count1*count2 < 1001);
printf ("%lld\n", ((long long)triangle)*(triangle+1)/2);
}
会将c代码运行时间减少到0.17-0.19秒,并且它可以处理更大的搜索-大于10000的因素在我的计算机上花费大约43秒。我对感兴趣的读者留下了类似的haskell提速。
Just for fun. The following is a more ‘native’ Haskell implementation:
import Control.Applicative
import Control.Monad
import Data.Either
import Math.NumberTheory.Powers.Squares
isInt :: RealFrac c => c -> Bool
isInt = (==) <$> id <*> fromInteger . round
intSqrt :: (Integral a) => a -> Int
--intSqrt = fromIntegral . floor . sqrt . fromIntegral
intSqrt = fromIntegral . integerSquareRoot'
factorize :: Int -> [Int]
factorize 1 = []
factorize n = first : factorize (quot n first)
where first = (!! 0) $ [a | a <- [2..intSqrt n], rem n a == 0] ++ [n]
factorize2 :: Int -> [(Int,Int)]
factorize2 = foldl (\ls@((val,freq):xs) y -> if val == y then (val,freq+1):xs else (y,1):ls) [(0,0)] . factorize
numDivisors :: Int -> Int
numDivisors = foldl (\acc (_,y) -> acc * (y+1)) 1 <$> factorize2
nextTriangleNumber :: (Int,Int) -> (Int,Int)
nextTriangleNumber (n,acc) = (n+1,acc+n+1)
forward :: Int -> (Int, Int) -> Either (Int, Int) (Int, Int)
forward k val@(n,acc) = if numDivisors acc > k then Left val else Right (nextTriangleNumber val)
problem12 :: Int -> (Int, Int)
problem12 n = (!!0) . lefts . scanl (>>=) (forward n (1,1)) . repeat . forward $ n
main = do
let (n,val) = problem12 1000
print val
Using ghc -O3
, this consistently runs in 0.55-0.58 seconds on my machine (1.73GHz Core i7).
A more efficient factorCount function for the C version:
int factorCount (int n)
{
int count = 1;
int candidate,tmpCount;
while (n % 2 == 0) {
count++;
n /= 2;
}
for (candidate = 3; candidate < n && candidate * candidate < n; candidate += 2)
if (n % candidate == 0) {
tmpCount = 1;
do {
tmpCount++;
n /= candidate;
} while (n % candidate == 0);
count*=tmpCount;
}
if (n > 1)
count *= 2;
return count;
}
Changing longs to ints in main, using gcc -O3 -lm
, this consistently runs in 0.31-0.35 seconds.
Both can be made to run even faster if you take advantage of the fact that the nth triangle number = n*(n+1)/2, and n and (n+1) have completely disparate prime factorizations, so the number of factors of each half can be multiplied to find the number of factors of the whole. The following:
int main ()
{
int triangle = 0,count1,count2 = 1;
do {
count1 = count2;
count2 = ++triangle % 2 == 0 ? factorCount(triangle+1) : factorCount((triangle+1)/2);
} while (count1*count2 < 1001);
printf ("%lld\n", ((long long)triangle)*(triangle+1)/2);
}
will reduce the c code run time to 0.17-0.19 seconds, and it can handle much larger searches — greater than 10000 factors takes about 43 seconds on my machine. I leave a similar haskell speedup to the interested reader.
回答 7
问题1:erlang,python和haskell是否由于使用任意长度的整数而导致速度变慢,或者只要值小于MAXINT,它们是否会变慢?
这不太可能。关于Erlang和Haskell,我不能说太多(嗯,下面可能是关于Haskell的话),但是我可以指出Python中的许多其他瓶颈。程序每次尝试使用Python中的某些值执行操作时,都应验证这些值是否来自正确的类型,这会花费一些时间。您的factorCount
函数只是分配一个具有range (1, isquare + 1)
不同时间的列表,而运行时malloc
风格的内存分配要比在C语言中对带有计数器的范围进行迭代要慢得多。factorCount()
方法被多次调用,因此分配了很多列表。另外,让我们不要忘记Python是被解释的,而CPython解释器并没有将重点放在优化上。
编辑:哦,嗯,我注意到您正在使用Python 3,因此range()
不会返回列表,而是返回一个生成器。在这种情况下,我关于分配列表的观点是错误的:该函数只是分配range
对象,尽管这些对象效率不高,但效率却不如分配包含许多项目的列表。
问题2:为什么haskell这么慢?是否有编译器标志可以使您刹车,或者它是我的实现?(后者很可能因为haskell是一本对我有七个印章的书。)
您在使用拥抱吗?拥抱是一个相当慢的解释器。如果您正在使用它,也许您可以获得GHC的美好时光 -但我只是混淆假设,一个好的Haskell编译器在幕后所做的工作非常有趣,并且超出了我的理解范围:)
问题3:能否为我提供一些提示,说明如何在不改变因素确定方式的情况下优化这些实现?以任何方式进行优化:对语言更好,更快,更“原生”。
我会说你在玩一个有趣的游戏。了解各种语言的最好的部分就是尽可能以最不同的方式使用它们:)但是我离题,我只是对此没有任何建议。抱歉,在这种情况下,希望有人能为您提供帮助:)
问题4:我的功能实现是否允许LCO,从而避免在调用堆栈中添加不必要的帧?
据我所记得,您只需要确保递归调用是返回值之前的最后一个命令。换句话说,下面的函数可以使用这种优化:
def factorial(n, acc=1):
if n > 1:
acc = acc * n
n = n - 1
return factorial(n, acc)
else:
return acc
但是,如果您的函数如下所示,则您将没有这样的优化,因为在递归调用之后有一个运算(乘法):
def factorial2(n):
if n > 1:
f = factorial2(n-1)
return f*n
else:
return 1
我将操作分为一些局部变量,以明确执行哪些操作。但是,最常见的是如下所示查看这些功能,但对于我要指出的内容,它们是等效的:
def factorial(n, acc=1):
if n > 1:
return factorial(n-1, acc*n)
else:
return acc
def factorial2(n):
if n > 1:
return n*factorial(n-1)
else:
return 1
注意,由编译器/解释器决定是否进行尾递归。例如,如果我没有记错的话,Python解释器就不会这样做(我之所以使用Python是因为它的语法很流利)。无论如何,如果您发现奇怪的东西,例如带有两个参数的阶乘函数(并且其中一个参数的名称具有诸如acc
,accumulator
等等),现在您知道人们为什么这样做了:)
Question 1: Do erlang, python and haskell loose speed due to using arbitrary length integers or don’t they as long as the values are less than MAXINT?
This is unlikely. I cannot say much about Erlang and Haskell (well, maybe a bit about Haskell below) but I can point a lot of other bottlenecks in Python. Every time the program tries to execute an operation with some values in Python, it should verify whether the values are from the proper type, and it costs a bit of time. Your factorCount
function just allocates a list with range (1, isquare + 1)
various times, and runtime, malloc
-styled memory allocation is way slower than iterating on a range with a counter as you do in C. Notably, the factorCount()
is called multiple times and so allocates a lot of lists. Also, let us not forget that Python is interpreted and the CPython interpreter has no great focus on being optimized.
EDIT: oh, well, I note that you are using Python 3 so range()
does not return a list, but a generator. In this case, my point about allocating lists is half-wrong: the function just allocates range
objects, which are inefficient nonetheless but not as inefficient as allocating a list with a lot of items.
Question 2: Why is haskell so slow? Is there a compiler flag that turns off the brakes or is it my implementation? (The latter is quite probable as haskell is a book with seven seals to me.)
Are you using Hugs? Hugs is a considerably slow interpreter. If you are using it, maybe you can get a better time with GHC – but I am only cogitating hypotesis, the kind of stuff a good Haskell compiler does under the hood is pretty fascinating and way beyond my comprehension :)
Question 3: Can you offer me some hints how to optimize these implementations without changing the way I determine the factors? Optimization in any way: nicer, faster, more “native” to the language.
I’d say you are playing an unfunny game. The best part of knowing various languages is to use them the most different way possible :) But I digress, I just do not have any recommendation for this point. Sorry, I hope someone can help you in this case :)
Question 4: Do my functional implementations permit LCO and hence avoid adding unnecessary frames onto the call stack?
As far as I remember, you just need to make sure that your recursive call is the last command before returning a value. In other words, a function like the one below could use such optimization:
def factorial(n, acc=1):
if n > 1:
acc = acc * n
n = n - 1
return factorial(n, acc)
else:
return acc
However, you would not have such optimization if your function were such as the one below, because there is an operation (multiplication) after the recursive call:
def factorial2(n):
if n > 1:
f = factorial2(n-1)
return f*n
else:
return 1
I separated the operations in some local variables for make it clear which operations are executed. However, the most usual is to see these functions as below, but they are equivalent for the point I am making:
def factorial(n, acc=1):
if n > 1:
return factorial(n-1, acc*n)
else:
return acc
def factorial2(n):
if n > 1:
return n*factorial(n-1)
else:
return 1
Note that it is up to the compiler/interpreter to decide if it will make tail recursion. For example, the Python interpreter does not do it if I remember well (I used Python in my example only because of its fluent syntax). Anyway, if you find strange stuff such as factorial functions with two parameters (and one of the parameters has names such as acc
, accumulator
etc.) now you know why people do it :)
回答 8
使用Haskell,您实际上不需要显式考虑递归。
factorCount number = foldr factorCount' 0 [1..isquare] -
(fromEnum $ square == fromIntegral isquare)
where
square = sqrt $ fromIntegral number
isquare = floor square
factorCount' candidate
| number `rem` candidate == 0 = (2 +)
| otherwise = id
triangles :: [Int]
triangles = scanl1 (+) [1,2..]
main = print . head $ dropWhile ((< 1001) . factorCount) triangles
在上面的代码中,我用普通的列表操作替换了@Thomas答案中的显式递归。该代码仍然执行完全相同的操作,而无需我们担心尾部递归。它运行(〜7.49s)比@Thomas的答案(〜7.04s)在我的装有GHC 7.6.2的机器上的速度慢约6%,而@Raedwulf的C版本的运行速度约为3.15s。一年以来,GHC似乎有所改善。
PS。我知道这是一个老问题,我在Google搜索中偶然发现了这个问题(现在我忘记了正在搜索的内容…)。只是想评论有关LCO的问题,并总体上表达我对Haskell的看法。我想对最佳答案发表评论,但评论不允许使用代码块。
With Haskell, you really don’t need to think in recursions explicitly.
factorCount number = foldr factorCount' 0 [1..isquare] -
(fromEnum $ square == fromIntegral isquare)
where
square = sqrt $ fromIntegral number
isquare = floor square
factorCount' candidate
| number `rem` candidate == 0 = (2 +)
| otherwise = id
triangles :: [Int]
triangles = scanl1 (+) [1,2..]
main = print . head $ dropWhile ((< 1001) . factorCount) triangles
In the above code, I have replaced explicit recursions in @Thomas’ answer with common list operations. The code still does exactly the same thing without us worrying about tail recursion. It runs (~ 7.49s) about 6% slower than the version in @Thomas’ answer (~ 7.04s) on my machine with GHC 7.6.2, while the C version from @Raedwulf runs ~ 3.15s. It seems GHC has improved over the year.
PS. I know it is an old question, and I stumble upon it from google searches (I forgot what I was searching, now…). Just wanted to comment on the question about LCO and express my feelings about Haskell in general. I wanted to comment on the top answer, but comments do not allow code blocks.
回答 9
有关C版本的更多数字和说明。显然,这些年来没有人这样做。记住要对这个答案进行投票,这样它才能在每个人的视野和学习中获得领先。
第一步:作者程序的基准
笔记本电脑规格:
- CPU i3 M380(931 MHz-最大省电模式)
- 4GB内存
- Win7 64位
- Microsoft Visual Studio 2012旗舰版
- Cygwin与GCC 4.9.3
- Python 2.7.10
命令:
compiling on VS x64 command prompt > `for /f %f in ('dir /b *.c') do cl /O2 /Ot /Ox %f -o %f_x64_vs2012.exe`
compiling on cygwin with gcc x64 > `for f in ./*.c; do gcc -m64 -O3 $f -o ${f}_x64_gcc.exe ; done`
time (unix tools) using cygwin > `for f in ./*.exe; do echo "----------"; echo $f ; time $f ; done`
。
----------
$ time python ./original.py
real 2m17.748s
user 2m15.783s
sys 0m0.093s
----------
$ time ./original_x86_vs2012.exe
real 0m8.377s
user 0m0.015s
sys 0m0.000s
----------
$ time ./original_x64_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./original_x64_gcc.exe
real 0m20.951s
user 0m20.732s
sys 0m0.030s
文件名是: integertype_architecture_compiler.exe
- 现在,integertype与原始程序相同(稍后会详细介绍)
- 架构是x86还是x64,具体取决于编译器设置
- 编译器是gcc还是vs2012
第二步:再次调查,改进并进行基准测试
VS比gcc快250%。两种编译器的速度应该相似。显然,代码或编译器选项出了点问题。让我们调查一下!
第一个关注点是整数类型。转换可能会很昂贵,并且一致性对于更好的代码生成和优化很重要。所有整数应为同一类型。
这是一个混合的混乱int
和long
现在。我们将对此进行改进。使用什么类型?最快的。要对它们进行基准测试!
----------
$ time ./int_x86_vs2012.exe
real 0m8.440s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int_x64_vs2012.exe
real 0m8.408s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int32_x86_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int32_x64_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x86_vs2012.exe
real 0m18.112s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x64_vs2012.exe
real 0m18.611s
user 0m0.000s
sys 0m0.015s
----------
$ time ./long_x86_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.000s
----------
$ time ./long_x64_vs2012.exe
real 0m8.440s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x86_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x64_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.015s
----------
$ time ./uint64_x86_vs2012.exe
real 0m15.428s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint64_x64_vs2012.exe
real 0m15.725s
user 0m0.015s
sys 0m0.015s
----------
$ time ./int_x64_gcc.exe
real 0m8.531s
user 0m8.329s
sys 0m0.015s
----------
$ time ./int32_x64_gcc.exe
real 0m8.471s
user 0m8.345s
sys 0m0.000s
----------
$ time ./int64_x64_gcc.exe
real 0m20.264s
user 0m20.186s
sys 0m0.015s
----------
$ time ./long_x64_gcc.exe
real 0m20.935s
user 0m20.809s
sys 0m0.015s
----------
$ time ./uint32_x64_gcc.exe
real 0m8.393s
user 0m8.346s
sys 0m0.015s
----------
$ time ./uint64_x64_gcc.exe
real 0m16.973s
user 0m16.879s
sys 0m0.030s
整数类型为int
long
int32_t
uint32_t
int64_t
and uint64_t
from#include <stdint.h>
在C中有很多整数类型,还有一些带符号/无符号可玩,以及选择编译为x86或x64(不要与实际整数大小混淆)的选择。有很多版本可以编译和运行^^
第三步:了解数字
明确的结论:
- 32位整数比64位等效项快200%
- 无符号的64位整数比有符号的64位快25%(不幸的是,我对此没有任何解释)
技巧问题:“ C中int和long的大小是多少?”
正确的答案是:int的大小和C中的long大小没有明确定义!
从C规范:
int至少为32位
长至少是一个int
从gcc手册页(-m32和-m64标志):
32位环境将int,long和指针设置为32位,并生成可在任何i386系统上运行的代码。
64位环境将int设置为32位长,将指针设置为64位,并为AMD的x86-64体系结构生成代码。
从MSDN文档(数据类型范围)https://msdn.microsoft.com/zh-cn/library/s3f49ktz%28v=vs.110%29.aspx:
int,4字节,也称为有符号
long,4字节,也称为long int和有符号long int
结论:吸取的教训
Some more numbers and explanations for the C version. Apparently noone did it during all those years. Remember to upvote this answer so it can get on top for everyone to see and learn.
Step One: Benchmark of the author’s programs
Laptop Specifications:
- CPU i3 M380 (931 MHz – maximum battery saving mode)
- 4GB memory
- Win7 64 bits
- Microsoft Visual Studio 2012 Ultimate
- Cygwin with gcc 4.9.3
- Python 2.7.10
Commands:
compiling on VS x64 command prompt > `for /f %f in ('dir /b *.c') do cl /O2 /Ot /Ox %f -o %f_x64_vs2012.exe`
compiling on cygwin with gcc x64 > `for f in ./*.c; do gcc -m64 -O3 $f -o ${f}_x64_gcc.exe ; done`
time (unix tools) using cygwin > `for f in ./*.exe; do echo "----------"; echo $f ; time $f ; done`
.
----------
$ time python ./original.py
real 2m17.748s
user 2m15.783s
sys 0m0.093s
----------
$ time ./original_x86_vs2012.exe
real 0m8.377s
user 0m0.015s
sys 0m0.000s
----------
$ time ./original_x64_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./original_x64_gcc.exe
real 0m20.951s
user 0m20.732s
sys 0m0.030s
Filenames are: integertype_architecture_compiler.exe
- integertype is the same as the original program for now (more on that later)
- architecture is x86 or x64 depending on the compiler settings
- compiler is gcc or vs2012
Step Two: Investigate, Improve and Benchmark Again
VS is 250% faster than gcc. The two compilers should give a similar speed. Obviously, something is wrong with the code or the compiler options. Let’s investigate!
The first point of interest is the integer types. Conversions can be expensive and consistency is important for better code generation & optimizations. All integers should be the same type.
It’s a mixed mess of int
and long
right now. We’re going to improve that. What type to use? The fastest. Gotta benchmark them’all!
----------
$ time ./int_x86_vs2012.exe
real 0m8.440s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int_x64_vs2012.exe
real 0m8.408s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int32_x86_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int32_x64_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x86_vs2012.exe
real 0m18.112s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x64_vs2012.exe
real 0m18.611s
user 0m0.000s
sys 0m0.015s
----------
$ time ./long_x86_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.000s
----------
$ time ./long_x64_vs2012.exe
real 0m8.440s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x86_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x64_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.015s
----------
$ time ./uint64_x86_vs2012.exe
real 0m15.428s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint64_x64_vs2012.exe
real 0m15.725s
user 0m0.015s
sys 0m0.015s
----------
$ time ./int_x64_gcc.exe
real 0m8.531s
user 0m8.329s
sys 0m0.015s
----------
$ time ./int32_x64_gcc.exe
real 0m8.471s
user 0m8.345s
sys 0m0.000s
----------
$ time ./int64_x64_gcc.exe
real 0m20.264s
user 0m20.186s
sys 0m0.015s
----------
$ time ./long_x64_gcc.exe
real 0m20.935s
user 0m20.809s
sys 0m0.015s
----------
$ time ./uint32_x64_gcc.exe
real 0m8.393s
user 0m8.346s
sys 0m0.015s
----------
$ time ./uint64_x64_gcc.exe
real 0m16.973s
user 0m16.879s
sys 0m0.030s
Integer types are int
long
int32_t
uint32_t
int64_t
and uint64_t
from #include <stdint.h>
There are LOTS of integer types in C, plus some signed/unsigned to play with, plus the choice to compile as x86 or x64 (not to be confused with the actual integer size). That is a lot of versions to compile and run ^^
Step Three: Understanding the Numbers
Definitive conclusions:
- 32 bits integers are ~200% faster than 64 bits equivalents
- unsigned 64 bits integers are 25 % faster than signed 64 bits (Unfortunately, I have no explanation for that)
Trick question: “What are the sizes of int and long in C?”
The right answer is: The size of int and long in C are not well-defined!
From the C spec:
int is at least 32 bits
long is at least an int
From the gcc man page (-m32 and -m64 flags):
The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any i386 system.
The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD’s x86-64 architecture.
From MSDN documentation (Data Type Ranges) https://msdn.microsoft.com/en-us/library/s3f49ktz%28v=vs.110%29.aspx :
int, 4 bytes, also knows as signed
long, 4 bytes, also knows as long int and signed long int
To Conclude This: Lessons Learned
32 bits integers are faster than 64 bits integers.
Standard integers types are not well defined in C nor C++, they vary depending on compilers and architectures. When you need consistency and predictability, use the uint32_t
integer family from #include <stdint.h>
.
Speed issues solved. All other languages are back hundreds percent behind, C & C++ win again ! They always do. The next improvement will be multithreading using OpenMP :D
回答 10
查看您的Erlang实现。时间包括启动整个虚拟机,运行程序以及停止虚拟机。非常确定,设置和停止erlang vm会花费一些时间。
如果计时是在erlang虚拟机本身内部完成的,则结果将有所不同,因为在这种情况下,我们仅拥有有关程序的实际时间。否则,我相信启动和加载Erlang Vm的过程加上停止它(如您在程序中所述)所花费的总时间都包含在您用于计时的方法的总时间中。程序正在输出。考虑使用erlang计时本身,当我们想在虚拟机本身中计时程序时使用
timer:tc/1 or timer:tc/2 or timer:tc/3
。这样,来自erlang的结果将排除启动和停止/杀死/停止虚拟机所花费的时间。那就是我的理由,考虑一下,然后再次尝试基准测试。
我实际上建议我们尝试在那些语言的运行时内对那些具有运行时的语言计时(对于具有运行时的语言),以便获得精确的值。例如,C与Erlang,Python和Haskell一样,没有启动和关闭运行时系统的开销(对此有98%的把握-我可以纠正)。因此(基于此推理),我最后说,该基准对于在运行时系统之上运行的语言而言不够精确/不够合理。让我们再次进行这些更改。
编辑:即使所有语言都有运行时系统,启动每种语言和停止它的开销也会有所不同。所以我建议我们从运行时系统中进行计时(适用于这种语言)。众所周知,Erlang VM在启动时会有相当大的开销!
Looking at your Erlang implementation. The timing has included the start up of the entire virtual machine, running your program and halting the virtual machine. Am pretty sure that setting up and halting the erlang vm takes some time.
If the timing was done within the erlang virtual machine itself, results would be different as in that case we would have the actual time for only the program in question. Otherwise, i believe that the total time taken by the process of starting and loading of the Erlang Vm plus that of halting it (as you put it in your program) are all included in the total time which the method you are using to time the program is outputting. Consider using the erlang timing itself which we use when we want to time our programs within the virtual machine itself
timer:tc/1 or timer:tc/2 or timer:tc/3
. In this way, the results from erlang will exclude the time taken to start and stop/kill/halt the virtual machine. That is my reasoning there, think about it, and then try your bench mark again.
I actually suggest that we try to time the program (for languages that have a runtime), within the runtime of those languages in order to get a precise value. C for example has no overhead of starting and shutting down a runtime system as does Erlang, Python and Haskell (98% sure of this – i stand correction). So (based on this reasoning) i conclude by saying that this benchmark wasnot precise /fair enough for languages running on top of a runtime system. Lets do it again with these changes.
EDIT: besides even if all the languages had runtime systems, the overhead of starting each and halting it would differ. so i suggest we time from within the runtime systems (for the languages for which this applies). The Erlang VM is known to have considerable overhead at start up!
回答 11
问题1:Erlang,Python和Haskell是否由于使用任意长度的整数而导致速度下降,还是只要它们的值小于MAXINT,它们就不会丢失吗?
对于Erlang,可以否定回答第一个问题。通过适当地使用Erlang可以回答最后一个问题,如下所示:
http://bredsaal.dk/learning-erlang-using-projecteuler-net
因为它比您最初的C示例要快,所以我想会有很多问题,因为其他问题已经详细介绍了。
这个Erlang模块在便宜的上网本上执行大约需要5秒钟的时间。它使用erlang中的网络线程模型,从而演示了如何利用事件模型。它可以分布在许多节点上。而且速度很快。不是我的代码。
-module(p12dist).
-author("Jannich Brendle, jannich@bredsaal.dk, http://blog.bredsaal.dk").
-compile(export_all).
server() ->
server(1).
server(Number) ->
receive {getwork, Worker_PID} -> Worker_PID ! {work,Number,Number+100},
server(Number+101);
{result,T} -> io:format("The result is: \~w.\~n", [T]);
_ -> server(Number)
end.
worker(Server_PID) ->
Server_PID ! {getwork, self()},
receive {work,Start,End} -> solve(Start,End,Server_PID)
end,
worker(Server_PID).
start() ->
Server_PID = spawn(p12dist, server, []),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]).
solve(N,End,_) when N =:= End -> no_solution;
solve(N,End,Server_PID) ->
T=round(N*(N+1)/2),
case (divisor(T,round(math:sqrt(T))) > 500) of
true ->
Server_PID ! {result,T};
false ->
solve(N+1,End,Server_PID)
end.
divisors(N) ->
divisor(N,round(math:sqrt(N))).
divisor(_,0) -> 1;
divisor(N,I) ->
case (N rem I) =:= 0 of
true ->
2+divisor(N,I-1);
false ->
divisor(N,I-1)
end.
以下测试在以下环境下进行:Intel(R)Atom(TM)CPU N270 @ 1.60GHz
~$ time erl -noshell -s p12dist start
The result is: 76576500.
^C
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution
a
real 0m5.510s
user 0m5.836s
sys 0m0.152s
Question 1: Do Erlang, Python and Haskell lose speed due to using
arbitrary length integers or don’t they as long as the values are less
than MAXINT?
Question one can be answered in the negative for Erlang. The last question is answered by using Erlang appropriately, as in:
http://bredsaal.dk/learning-erlang-using-projecteuler-net
Since it’s faster than your initial C example, I would guess there are numerous problems as others have already covered in detail.
This Erlang module executes on a cheap netbook in about 5 seconds … It uses the network threads model in erlang and, as such demonstrates how to take advantage of the event model. It could be distributed over many nodes. And it’s fast. Not my code.
-module(p12dist).
-author("Jannich Brendle, jannich@bredsaal.dk, http://blog.bredsaal.dk").
-compile(export_all).
server() ->
server(1).
server(Number) ->
receive {getwork, Worker_PID} -> Worker_PID ! {work,Number,Number+100},
server(Number+101);
{result,T} -> io:format("The result is: \~w.\~n", [T]);
_ -> server(Number)
end.
worker(Server_PID) ->
Server_PID ! {getwork, self()},
receive {work,Start,End} -> solve(Start,End,Server_PID)
end,
worker(Server_PID).
start() ->
Server_PID = spawn(p12dist, server, []),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]).
solve(N,End,_) when N =:= End -> no_solution;
solve(N,End,Server_PID) ->
T=round(N*(N+1)/2),
case (divisor(T,round(math:sqrt(T))) > 500) of
true ->
Server_PID ! {result,T};
false ->
solve(N+1,End,Server_PID)
end.
divisors(N) ->
divisor(N,round(math:sqrt(N))).
divisor(_,0) -> 1;
divisor(N,I) ->
case (N rem I) =:= 0 of
true ->
2+divisor(N,I-1);
false ->
divisor(N,I-1)
end.
The test below took place on an: Intel(R) Atom(TM) CPU N270 @ 1.60GHz
~$ time erl -noshell -s p12dist start
The result is: 76576500.
^C
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution
a
real 0m5.510s
user 0m5.836s
sys 0m0.152s
回答 12
C ++ 11,<我20ms的 – 运行在这里
我了解您想获得一些技巧来帮助您改善特定于语言的知识,但是由于本文对此已作了详尽介绍,因此我想为可能看过您对问题的数学评论等内容的人添加一些上下文,并想知道为什么这样做代码太慢了。
该答案主要是提供上下文,以希望帮助人们更轻松地评估您的问题/其他答案中的代码。
这段代码仅基于以下几点使用了与丑陋语言无关的(丑陋的)优化:
- 每个训练序列号的形式为n(n + 1)/ 2
- n和n + 1是互质的
- 除数是一个乘法函数
#include <iostream>
#include <cmath>
#include <tuple>
#include <chrono>
using namespace std;
// Calculates the divisors of an integer by determining its prime factorisation.
int get_divisors(long long n)
{
int divisors_count = 1;
for(long long i = 2;
i <= sqrt(n);
/* empty */)
{
int divisions = 0;
while(n % i == 0)
{
n /= i;
divisions++;
}
divisors_count *= (divisions + 1);
//here, we try to iterate more efficiently by skipping
//obvious non-primes like 4, 6, etc
if(i == 2)
i++;
else
i += 2;
}
if(n != 1) //n is a prime
return divisors_count * 2;
else
return divisors_count;
}
long long euler12()
{
//n and n + 1
long long n, n_p_1;
n = 1; n_p_1 = 2;
// divisors_x will store either the divisors of x or x/2
// (the later iff x is divisible by two)
long long divisors_n = 1;
long long divisors_n_p_1 = 2;
for(;;)
{
/* This loop has been unwound, so two iterations are completed at a time
* n and n + 1 have no prime factors in common and therefore we can
* calculate their divisors separately
*/
long long total_divisors; //the divisors of the triangle number
// n(n+1)/2
//the first (unwound) iteration
divisors_n_p_1 = get_divisors(n_p_1 / 2); //here n+1 is even and we
total_divisors =
divisors_n
* divisors_n_p_1;
if(total_divisors > 1000)
break;
//move n and n+1 forward
n = n_p_1;
n_p_1 = n + 1;
//fix the divisors
divisors_n = divisors_n_p_1;
divisors_n_p_1 = get_divisors(n_p_1); //n_p_1 is now odd!
//now the second (unwound) iteration
total_divisors =
divisors_n
* divisors_n_p_1;
if(total_divisors > 1000)
break;
//move n and n+1 forward
n = n_p_1;
n_p_1 = n + 1;
//fix the divisors
divisors_n = divisors_n_p_1;
divisors_n_p_1 = get_divisors(n_p_1 / 2); //n_p_1 is now even!
}
return (n * n_p_1) / 2;
}
int main()
{
for(int i = 0; i < 1000; i++)
{
using namespace std::chrono;
auto start = high_resolution_clock::now();
auto result = euler12();
auto end = high_resolution_clock::now();
double time_elapsed = duration_cast<milliseconds>(end - start).count();
cout << result << " " << time_elapsed << '\n';
}
return 0;
}
我的台式机平均要花19毫秒,而笔记本电脑平均要花80毫秒,这与我在这里看到的大多数其他代码相去甚远。毫无疑问,仍有许多优化措施可用。
C++11, < 20ms for me – Run it here
I understand that you want tips to help improve your language specific knowledge, but since that has been well covered here, I thought I would add some context for people who may have looked at the mathematica comment on your question, etc, and wondered why this code was so much slower.
This answer is mainly to provide context to hopefully help people evaluate the code in your question / other answers more easily.
This code uses only a couple of (uglyish) optimisations, unrelated to the language used, based on:
- every traingle number is of the form n(n+1)/2
- n and n+1 are coprime
- the number of divisors is a multiplicative function
#include <iostream>
#include <cmath>
#include <tuple>
#include <chrono>
using namespace std;
// Calculates the divisors of an integer by determining its prime factorisation.
int get_divisors(long long n)
{
int divisors_count = 1;
for(long long i = 2;
i <= sqrt(n);
/* empty */)
{
int divisions = 0;
while(n % i == 0)
{
n /= i;
divisions++;
}
divisors_count *= (divisions + 1);
//here, we try to iterate more efficiently by skipping
//obvious non-primes like 4, 6, etc
if(i == 2)
i++;
else
i += 2;
}
if(n != 1) //n is a prime
return divisors_count * 2;
else
return divisors_count;
}
long long euler12()
{
//n and n + 1
long long n, n_p_1;
n = 1; n_p_1 = 2;
// divisors_x will store either the divisors of x or x/2
// (the later iff x is divisible by two)
long long divisors_n = 1;
long long divisors_n_p_1 = 2;
for(;;)
{
/* This loop has been unwound, so two iterations are completed at a time
* n and n + 1 have no prime factors in common and therefore we can
* calculate their divisors separately
*/
long long total_divisors; //the divisors of the triangle number
// n(n+1)/2
//the first (unwound) iteration
divisors_n_p_1 = get_divisors(n_p_1 / 2); //here n+1 is even and we
total_divisors =
divisors_n
* divisors_n_p_1;
if(total_divisors > 1000)
break;
//move n and n+1 forward
n = n_p_1;
n_p_1 = n + 1;
//fix the divisors
divisors_n = divisors_n_p_1;
divisors_n_p_1 = get_divisors(n_p_1); //n_p_1 is now odd!
//now the second (unwound) iteration
total_divisors =
divisors_n
* divisors_n_p_1;
if(total_divisors > 1000)
break;
//move n and n+1 forward
n = n_p_1;
n_p_1 = n + 1;
//fix the divisors
divisors_n = divisors_n_p_1;
divisors_n_p_1 = get_divisors(n_p_1 / 2); //n_p_1 is now even!
}
return (n * n_p_1) / 2;
}
int main()
{
for(int i = 0; i < 1000; i++)
{
using namespace std::chrono;
auto start = high_resolution_clock::now();
auto result = euler12();
auto end = high_resolution_clock::now();
double time_elapsed = duration_cast<milliseconds>(end - start).count();
cout << result << " " << time_elapsed << '\n';
}
return 0;
}
That takes around 19ms on average for my desktop and 80ms for my laptop, a far cry from most of the other code I’ve seen here. And there are, no doubt, many optimisations still available.
回答 13
尝试去:
package main
import "fmt"
import "math"
func main() {
var n, m, c int
for i := 1; ; i++ {
n, m, c = i * (i + 1) / 2, int(math.Sqrt(float64(n))), 0
for f := 1; f < m; f++ {
if n % f == 0 { c++ }
}
c *= 2
if m * m == n { c ++ }
if c > 1001 {
fmt.Println(n)
break
}
}
}
我得到:
原始C版本:9.1690 100%
执行:8.2520 111%
但是使用:
package main
import (
"math"
"fmt"
)
// Sieve of Eratosthenes
func PrimesBelow(limit int) []int {
switch {
case limit < 2:
return []int{}
case limit == 2:
return []int{2}
}
sievebound := (limit - 1) / 2
sieve := make([]bool, sievebound+1)
crosslimit := int(math.Sqrt(float64(limit))-1) / 2
for i := 1; i <= crosslimit; i++ {
if !sieve[i] {
for j := 2 * i * (i + 1); j <= sievebound; j += 2*i + 1 {
sieve[j] = true
}
}
}
plimit := int(1.3*float64(limit)) / int(math.Log(float64(limit)))
primes := make([]int, plimit)
p := 1
primes[0] = 2
for i := 1; i <= sievebound; i++ {
if !sieve[i] {
primes[p] = 2*i + 1
p++
if p >= plimit {
break
}
}
}
last := len(primes) - 1
for i := last; i > 0; i-- {
if primes[i] != 0 {
break
}
last = i
}
return primes[0:last]
}
func main() {
fmt.Println(p12())
}
// Requires PrimesBelow from utils.go
func p12() int {
n, dn, cnt := 3, 2, 0
primearray := PrimesBelow(1000000)
for cnt <= 1001 {
n++
n1 := n
if n1%2 == 0 {
n1 /= 2
}
dn1 := 1
for i := 0; i < len(primearray); i++ {
if primearray[i]*primearray[i] > n1 {
dn1 *= 2
break
}
exponent := 1
for n1%primearray[i] == 0 {
exponent++
n1 /= primearray[i]
}
if exponent > 1 {
dn1 *= exponent
}
if n1 == 1 {
break
}
}
cnt = dn * dn1
dn = dn1
}
return n * (n - 1) / 2
}
我得到:
原始c版本:9.1690 100%
thaumkid的c版本:0.1060 8650%
初版:8.2520 111%
次版:0.0230 39865%
我也尝试了Python3.6和pypy3.3-5.5-alpha:
原始C版本:8.629 100%
thaumkid的C版本:0.109 7916%
Python3.6:54.795 16%
pypy3.3-5.5-alpha:13.291 65%
然后用下面的代码我得到:
原始c版本:8.629 100%
thaumkid的c版本:0.109 8650%
Python3.6:1.489 580%
pypy3.3-5.5-alpha:0.582 1483%
def D(N):
if N == 1: return 1
sqrtN = int(N ** 0.5)
nf = 1
for d in range(2, sqrtN + 1):
if N % d == 0:
nf = nf + 1
return 2 * nf - (1 if sqrtN**2 == N else 0)
L = 1000
Dt, n = 0, 0
while Dt <= L:
t = n * (n + 1) // 2
Dt = D(n/2)*D(n+1) if n%2 == 0 else D(n)*D((n+1)/2)
n = n + 1
print (t)
Trying GO:
package main
import "fmt"
import "math"
func main() {
var n, m, c int
for i := 1; ; i++ {
n, m, c = i * (i + 1) / 2, int(math.Sqrt(float64(n))), 0
for f := 1; f < m; f++ {
if n % f == 0 { c++ }
}
c *= 2
if m * m == n { c ++ }
if c > 1001 {
fmt.Println(n)
break
}
}
}
I get:
original c version: 9.1690 100%
go: 8.2520 111%
But using:
package main
import (
"math"
"fmt"
)
// Sieve of Eratosthenes
func PrimesBelow(limit int) []int {
switch {
case limit < 2:
return []int{}
case limit == 2:
return []int{2}
}
sievebound := (limit - 1) / 2
sieve := make([]bool, sievebound+1)
crosslimit := int(math.Sqrt(float64(limit))-1) / 2
for i := 1; i <= crosslimit; i++ {
if !sieve[i] {
for j := 2 * i * (i + 1); j <= sievebound; j += 2*i + 1 {
sieve[j] = true
}
}
}
plimit := int(1.3*float64(limit)) / int(math.Log(float64(limit)))
primes := make([]int, plimit)
p := 1
primes[0] = 2
for i := 1; i <= sievebound; i++ {
if !sieve[i] {
primes[p] = 2*i + 1
p++
if p >= plimit {
break
}
}
}
last := len(primes) - 1
for i := last; i > 0; i-- {
if primes[i] != 0 {
break
}
last = i
}
return primes[0:last]
}
func main() {
fmt.Println(p12())
}
// Requires PrimesBelow from utils.go
func p12() int {
n, dn, cnt := 3, 2, 0
primearray := PrimesBelow(1000000)
for cnt <= 1001 {
n++
n1 := n
if n1%2 == 0 {
n1 /= 2
}
dn1 := 1
for i := 0; i < len(primearray); i++ {
if primearray[i]*primearray[i] > n1 {
dn1 *= 2
break
}
exponent := 1
for n1%primearray[i] == 0 {
exponent++
n1 /= primearray[i]
}
if exponent > 1 {
dn1 *= exponent
}
if n1 == 1 {
break
}
}
cnt = dn * dn1
dn = dn1
}
return n * (n - 1) / 2
}
I get:
original c version: 9.1690 100%
thaumkid’s c version: 0.1060 8650%
first go version: 8.2520 111%
second go version: 0.0230 39865%
I also tried Python3.6 and pypy3.3-5.5-alpha:
original c version: 8.629 100%
thaumkid’s c version: 0.109 7916%
Python3.6: 54.795 16%
pypy3.3-5.5-alpha: 13.291 65%
and then with following code I got:
original c version: 8.629 100%
thaumkid’s c version: 0.109 8650%
Python3.6: 1.489 580%
pypy3.3-5.5-alpha: 0.582 1483%
def D(N):
if N == 1: return 1
sqrtN = int(N ** 0.5)
nf = 1
for d in range(2, sqrtN + 1):
if N % d == 0:
nf = nf + 1
return 2 * nf - (1 if sqrtN**2 == N else 0)
L = 1000
Dt, n = 0, 0
while Dt <= L:
t = n * (n + 1) // 2
Dt = D(n/2)*D(n+1) if n%2 == 0 else D(n)*D((n+1)/2)
n = n + 1
print (t)
回答 14
更改: case (divisor(T,round(math:sqrt(T))) > 500) of
至: case (divisor(T,round(math:sqrt(T))) > 1000) of
这将为Erlang多进程示例提供正确的答案。
Change: case (divisor(T,round(math:sqrt(T))) > 500) of
To: case (divisor(T,round(math:sqrt(T))) > 1000) of
This will produce the correct answer for the Erlang multi-process example.
回答 15
我假设只有在涉及的因素有很多小因素的情况下,因素的数量才会很大。因此,我使用了thaumkid出色的算法,但首先使用了对因数的近似值,该值永远不会太小。这很简单:检查最多29个主要因子,然后检查剩余数量并计算n个因子的上限。用它来计算因子数量的上限,如果该数量足够高,请计算因子的确切数量。
下面的代码不需要出于正确性的这种假设,而是要快速。似乎可行;十万分之一的数字中只有大约一个给出的估计值足够高,需要进行全面检查。
这是代码:
// Return at least the number of factors of n.
static uint64_t approxfactorcount (uint64_t n)
{
uint64_t count = 1, add;
#define CHECK(d) \
do { \
if (n % d == 0) { \
add = count; \
do { n /= d; count += add; } \
while (n % d == 0); \
} \
} while (0)
CHECK ( 2); CHECK ( 3); CHECK ( 5); CHECK ( 7); CHECK (11); CHECK (13);
CHECK (17); CHECK (19); CHECK (23); CHECK (29);
if (n == 1) return count;
if (n < 1ull * 31 * 31) return count * 2;
if (n < 1ull * 31 * 31 * 37) return count * 4;
if (n < 1ull * 31 * 31 * 37 * 37) return count * 8;
if (n < 1ull * 31 * 31 * 37 * 37 * 41) return count * 16;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43) return count * 32;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47) return count * 64;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53) return count * 128;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59) return count * 256;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61) return count * 512;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67) return count * 1024;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71) return count * 2048;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73) return count * 4096;
return count * 1000000;
}
// Return the number of factors of n.
static uint64_t factorcount (uint64_t n)
{
uint64_t count = 1, add;
CHECK (2); CHECK (3);
uint64_t d = 5, inc = 2;
for (; d*d <= n; d += inc, inc = (6 - inc))
CHECK (d);
if (n > 1) count *= 2; // n must be a prime number
return count;
}
// Prints triangular numbers with record numbers of factors.
static void printrecordnumbers (uint64_t limit)
{
uint64_t record = 30000;
uint64_t count1, factor1;
uint64_t count2 = 1, factor2 = 1;
for (uint64_t n = 1; n <= limit; ++n)
{
factor1 = factor2;
count1 = count2;
factor2 = n + 1; if (factor2 % 2 == 0) factor2 /= 2;
count2 = approxfactorcount (factor2);
if (count1 * count2 > record)
{
uint64_t factors = factorcount (factor1) * factorcount (factor2);
if (factors > record)
{
printf ("%lluth triangular number = %llu has %llu factors\n", n, factor1 * factor2, factors);
record = factors;
}
}
}
}
这将在0.7秒内找到第14,753,024个三角形,其中有13824个因数;在34秒内找到了879,207,615个三角形,其中有61,440个因数;在10分钟5秒内发现了第123,524,486,975个三角形,具有138,240个因数;在第26,467,792,064个三角形中,具有172,032个因数。 21分25秒(2.4 GHz Core2 Duo),因此该代码平均每个数字仅需要116个处理器周期。最后一个三角形数字本身大于2 ^ 68,因此
I made the assumption that the number of factors is only large if the numbers involved have many small factors. So I used thaumkid’s excellent algorithm, but first used an approximation to the factor count that is never too small. It’s quite simple: Check for prime factors up to 29, then check the remaining number and calculate an upper bound for the nmber of factors. Use this to calculate an upper bound for the number of factors, and if that number is high enough, calculate the exact number of factors.
The code below doesn’t need this assumption for correctness, but to be fast. It seems to work; only about one in 100,000 numbers gives an estimate that is high enough to require a full check.
Here’s the code:
// Return at least the number of factors of n.
static uint64_t approxfactorcount (uint64_t n)
{
uint64_t count = 1, add;
#define CHECK(d) \
do { \
if (n % d == 0) { \
add = count; \
do { n /= d; count += add; } \
while (n % d == 0); \
} \
} while (0)
CHECK ( 2); CHECK ( 3); CHECK ( 5); CHECK ( 7); CHECK (11); CHECK (13);
CHECK (17); CHECK (19); CHECK (23); CHECK (29);
if (n == 1) return count;
if (n < 1ull * 31 * 31) return count * 2;
if (n < 1ull * 31 * 31 * 37) return count * 4;
if (n < 1ull * 31 * 31 * 37 * 37) return count * 8;
if (n < 1ull * 31 * 31 * 37 * 37 * 41) return count * 16;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43) return count * 32;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47) return count * 64;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53) return count * 128;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59) return count * 256;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61) return count * 512;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67) return count * 1024;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71) return count * 2048;
if (n < 1ull * 31 * 31 * 37 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73) return count * 4096;
return count * 1000000;
}
// Return the number of factors of n.
static uint64_t factorcount (uint64_t n)
{
uint64_t count = 1, add;
CHECK (2); CHECK (3);
uint64_t d = 5, inc = 2;
for (; d*d <= n; d += inc, inc = (6 - inc))
CHECK (d);
if (n > 1) count *= 2; // n must be a prime number
return count;
}
// Prints triangular numbers with record numbers of factors.
static void printrecordnumbers (uint64_t limit)
{
uint64_t record = 30000;
uint64_t count1, factor1;
uint64_t count2 = 1, factor2 = 1;
for (uint64_t n = 1; n <= limit; ++n)
{
factor1 = factor2;
count1 = count2;
factor2 = n + 1; if (factor2 % 2 == 0) factor2 /= 2;
count2 = approxfactorcount (factor2);
if (count1 * count2 > record)
{
uint64_t factors = factorcount (factor1) * factorcount (factor2);
if (factors > record)
{
printf ("%lluth triangular number = %llu has %llu factors\n", n, factor1 * factor2, factors);
record = factors;
}
}
}
}
This finds the 14,753,024th triangular with 13824 factors in about 0.7 seconds, the 879,207,615th triangular number with 61,440 factors in 34 seconds, the 12,524,486,975th triangular number with 138,240 factors in 10 minutes 5 seconds, and the 26,467,792,064th triangular number with 172,032 factors in 21 minutes 25 seconds (2.4GHz Core2 Duo), so this code takes only 116 processor cycles per number on average. The last triangular number itself is larger than 2^68, so
回答 16
我将“ Jannich Brendle”版本修改为1000,而不是500。并列出了euler12.bin,euler12.erl,p12dist.erl的结果。两种erl代码都使用“ + native”进行编译。
zhengs-MacBook-Pro:workspace zhengzhibin$ time erl -noshell -s p12dist start
The result is: 842161320.
real 0m3.879s
user 0m14.553s
sys 0m0.314s
zhengs-MacBook-Pro:workspace zhengzhibin$ time erl -noshell -s euler12 solve
842161320
real 0m10.125s
user 0m10.078s
sys 0m0.046s
zhengs-MacBook-Pro:workspace zhengzhibin$ time ./euler12.bin
842161320
real 0m5.370s
user 0m5.328s
sys 0m0.004s
zhengs-MacBook-Pro:workspace zhengzhibin$
I modified “Jannich Brendle” version to 1000 instead 500. And list the result of euler12.bin, euler12.erl, p12dist.erl. Both erl codes use ‘+native’ to compile.
zhengs-MacBook-Pro:workspace zhengzhibin$ time erl -noshell -s p12dist start
The result is: 842161320.
real 0m3.879s
user 0m14.553s
sys 0m0.314s
zhengs-MacBook-Pro:workspace zhengzhibin$ time erl -noshell -s euler12 solve
842161320
real 0m10.125s
user 0m10.078s
sys 0m0.046s
zhengs-MacBook-Pro:workspace zhengzhibin$ time ./euler12.bin
842161320
real 0m5.370s
user 0m5.328s
sys 0m0.004s
zhengs-MacBook-Pro:workspace zhengzhibin$
回答 17
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square+1;
long candidate = 2;
int count = 1;
while(candidate <= isquare && candidate<=n){
int c = 1;
while (n % candidate == 0) {
c++;
n /= candidate;
}
count *= c;
candidate++;
}
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
gcc -lm -Ofast euler.c
超时时间
2.79s用户0.00s系统99%cpu 2.794
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square+1;
long candidate = 2;
int count = 1;
while(candidate <= isquare && candidate<=n){
int c = 1;
while (n % candidate == 0) {
c++;
n /= candidate;
}
count *= c;
candidate++;
}
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
gcc -lm -Ofast euler.c
time ./a.out
2.79s user 0.00s system 99% cpu 2.794 total