标签归档:etl

超级方便的轻量级Python流水线工具,拥有漂亮的可视化界面!

Mara-pipelines 是一个轻量级的数据转换框架,具有透明和低复杂性的特点。其他特点如下:

  • 基于非常简单的Python代码就能完成流水线开发。
  • 使用 PostgreSQL 作为数据处理引擎。
  • 有Web界面可视化分析流水线执行过程。
  • 基于 Python 的 multiprocessing 单机流水线执行。不需要分布式任务队列。轻松调试和输出日志。
  • 基于成本的优先队列:首先运行具有较高成本(基于记录的运行时间)的节点。

此外,在Mara-pipelines的Web界面中,你不仅可以查看和管理流水线及其任务节点,你还可以直接触发这些流水线和节点,非常好用:

1.安装

由于使用了大量的依赖,Mara-pipelines 并不适用于Windows,如果你需要在Windows上使用Mara-pipelines,请使用docker或者windows下的linux子系统

使用pipe安装Mara-pipelines:

pip install mara-pipelines

或者:

pip install git+https://github.com/mara/mara-pipelines.git

2.使用示例

这是一个基础的流水线演示,由三个相互依赖的节点组成,包括 任务1(ping_localhost), 子流水线(sub_pipeline), 任务2(sleep):

# 注意,这个示例中使用了部分国外的网站,如果无法访问,请变更为国内网站。
from mara_pipelines.commands.bash import RunBash
from mara_pipelines.pipelines import Pipeline, Task
from mara_pipelines.ui.cli import run_pipeline, run_interactively

pipeline = Pipeline(
    id='demo',
    description='A small pipeline that demonstrates the interplay between pipelines, tasks and commands')

pipeline.add(Task(id='ping_localhost', description='Pings localhost',
                  commands=[RunBash('ping -c 3 localhost')]))

sub_pipeline = Pipeline(id='sub_pipeline', description='Pings a number of hosts')

for host in ['google', 'amazon', 'facebook']:
    sub_pipeline.add(Task(id=f'ping_{host}', description=f'Pings {host}',
                          commands=[RunBash(f'ping -c 3 {host}.com')]))

sub_pipeline.add_dependency('ping_amazon', 'ping_facebook')
sub_pipeline.add(Task(id='ping_foo', description='Pings foo',
                      commands=[RunBash('ping foo')]), ['ping_amazon'])

pipeline.add(sub_pipeline, ['ping_localhost'])

pipeline.add(Task(id='sleep', description='Sleeps for 2 seconds',
                  commands=[RunBash('sleep 2')]), ['sub_pipeline'])

可以看到,Task包含了多个commands,这些commands会用于真正地执行动作。而 pipeline.add 的参数中,第一个参数是其节点,第二个参数是此节点的上游。如:

pipeline.add(sub_pipeline, ['ping_localhost'])

则表明必须执行完 ping_localhost 才会执行 sub_pipeline.

为了运行这个流水线,需要配置一个 PostgreSQL 数据库来存储运行时信息、运行输出和增量处理状态:

import mara_db.auto_migration
import mara_db.config
import mara_db.dbs

mara_db.config.databases \
    = lambda: {'mara': mara_db.dbs.PostgreSQLDB(host='localhost', user='root', database='example_etl_mara')}

mara_db.auto_migration.auto_discover_models_and_migrate()

如果 PostgresSQL 正在运行并且账号密码正确,输出如下所示(创建了一个包含多个表的数据库):

Created database "postgresql+psycopg2://root@localhost/example_etl_mara"

CREATE TABLE data_integration_file_dependency (
    node_path TEXT[] NOT NULL, 
    dependency_type VARCHAR NOT NULL, 
    hash VARCHAR, 
    timestamp TIMESTAMP WITHOUT TIME ZONE, 
    PRIMARY KEY (node_path, dependency_type)
);

.. more tables

为了运行这个流水线,你需要:

from mara_pipelines.ui.cli import run_pipeline

run_pipeline(pipeline)

这将运行单个流水线节点及其 (sub_pipeline) 所依赖的所有节点:

run_pipeline(sub_pipeline, nodes=[sub_pipeline.nodes['ping_amazon']], with_upstreams=True)

3.Web 界面

我认为 mara-pipelines 最有用的是他们提供了基于Flask管控流水线的Web界面。

对于每条流水线,他们都有一个页面显示:

  • 所有子节点的图以及它们之间的依赖关系
  • 流水线的总体运行时间图表以及过去 30 天内最昂贵的节点(可配置)
  • 所有流水线节点及其平均运行时间和由此产生的排队优先级的表
  • 流水线最后一次运行的输出和时间线

对于每个任务,都有一个页面显示

  • 流水线中任务的上游和下游
  • 最近 30 天内任务的运行时间
  • 任务的所有命令
  • 任务最后运行的输出

此外,流水线和任务可以直接从网页端调用运行,这是非常棒的特点:

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典