标签归档:ml

Handson-ml-Jupyter 引导您学习机器学习和深度学习的基础知识

Handson-ml-Jupyter 使用Scikit-Learning和TensorFlow在Python中引导您学习机器学习和深度学习的基础知识。

机器学习笔记本

本项目旨在教您Python中机器学习的基础知识。它包含我的O‘Reilly书中练习的示例代码和解决方案Hands-on Machine Learning with Scikit-Learn and TensorFlow

警告:这本书现在有一个较新的版本,请查收github.com/ageron/handson-ml2

快速入门

想在不安装任何东西的情况下在线玩这些笔记本吗?

使用以下任一服务

警告:请注意,这些服务提供临时环境:您所做的任何操作都将在一段时间后被删除,因此请确保下载您关心的任何数据

  • 推荐:在以下位置打开此存储库Colaboratory
  • 或在中打开它Binder
    • 注意事项:大多数情况下,Binder启动速度很快,工作效果很好,但是当handson-ml更新时,Binder会从头开始创建一个新环境,这可能需要相当长的时间
  • 或在中打开它Deepnote

只想快速浏览一些笔记本,而不执行任何代码?

使用浏览此存储库jupyter.org’s notebook viewer

注意事项github.com’s notebook viewer也可以工作,但速度较慢,并且数学公式并不总是正确显示

要使用Docker映像运行此项目吗?

请阅读Docker instructions

要在您自己的计算机上安装此项目吗?

从安装开始Anaconda(或Miniconda),git,如果您有兼容TensorFlow的GPU,请安装GPU driver,以及相应版本的CUDA和cuDNN(有关详细信息,请参阅TensorFlow的文档)

接下来,通过打开终端并键入以下命令(不要键入第一个命令)来克隆此项目$每行上的符号仅表示这些是终端命令):

$ git clone https://github.com/ageron/handson-ml.git
$ cd handson-ml

接下来,运行以下命令:

$ conda env create -f environment.yml
$ conda activate tf1
$ python -m ipykernel install --user --name=python3

最后,启动Jupyter:

$ jupyter notebook

如果您需要进一步的说明,请阅读detailed installation instructions

常见问题解答

我应该使用哪个Python版本?

我推荐Python3.7。如果您按照上面的安装说明操作,您将获得该版本。大多数代码都可以与其他版本的Python3一起使用,但有些库还不支持Python3.8或3.9,这就是我推荐Python3.7的原因

当我调用时收到错误消息load_housing_data()

一定要给我打电话fetch_housing_data()在此之前你打电话给我load_housing_data()如果您收到HTTP错误,请确保您运行的代码与笔记本中的代码完全相同(如果需要,请复制/粘贴)。如果问题仍然存在,请检查您的网络配置

我在MacOSX上收到SSL错误

您可能需要安装SSL证书(请参阅此处StackOverflow question)。如果您从官方网站下载了Python,则运行/Applications/Python\ 3.7/Install\ Certificates.command在终端中(更改3.7到您安装的任何版本)。如果使用MacPorts安装Python,请运行sudo port install curl-ca-bundle在终端中

我已经在本地安装了这个项目。如何将其更新到最新版本?

看见INSTALL.md

在使用python时,如何将我的Python库更新到最新版本?

看见INSTALL.md

贡献者

我要感谢所有人who contributed to this project,通过提供有用的反馈、提交问题或提交拉取请求。特别感谢海森·帕克和伊恩·博雷德,他们审阅了每个笔记本,并提交了许多公关,包括在一些练习解决方案上的帮助。还要感谢史蒂文·邦克利和齐恩布拉,他们创造了docker目录,并感谢GitHub用户SuperYorio,他在一些运动解决方案上提供了帮助

Tensorflow-一个面向每个人的开源机器学习框架

Documentation

TensorFlow是一个端到端的机器学习开源平台。它有一个由工具、库和社区资源组成的全面、灵活的生态系统,使研究人员能够使用ML推动最先进的技术,开发人员可以轻松地构建和部署基于ML的应用程序

TensorFlow最初是由谷歌机器智能研究组织内谷歌大脑团队的研究人员和工程师开发的,目的是进行机器学习和深度神经网络研究。该系统具有足够的通用性,可以广泛应用于其他领域

TensorFlow提供稳定的Python和C++API,以及不保证向后兼容的其他语言API

订阅untify@tensorflow.org,随时了解最新的版本公告和安全更新。查看所有邮件列表

安装

请参阅PIP包的TensorFlow安装指南,要启用GPU支持,请使用Docker容器,并从源代码构建

要安装当前版本(包括对启用CUDA的GPU卡(Ubuntu和Windows)的支持),请执行以下操作:

$ pip install tensorflow

此外,还提供了一个较小的仅限CPU的软件包:

$ pip install tensorflow-cpu

要将TensorFlow更新到最新版本,请在上述命令中添加–upgrade标志

夜间二进制文件可用于在PyPI上使用tf-nighly和tf-nighly-cpu包进行测试

尝试您的第一个TensorFlow程序

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
b'Hello, TensorFlow!'

有关更多示例,请参阅TensorFlow教程

投稿指南

如果您想对TensorFlow做出贡献,请务必查看贡献指南。该项目遵循TensorFlow的行为准则。通过参与,您应该遵守本守则

我们使用GitHub问题来跟踪请求和错误,有关一般问题和讨论,请参阅TensorFlow讨论,并请将具体问题直接指向Stack Overflow

TensorFlow项目致力于遵守开源软件开发中公认的最佳实践:

连续生成状态

您可以在TensorFlow SIG build社区构建表中找到更多社区支持的平台和配置

官方版本

Build Type Status Artifacts
Linux CPU PyPI
Linux GPU PyPI
Linux XLA TBA
macOS PyPI
Windows CPU PyPI
Windows GPU PyPI
Android
Raspberry Pi 0 and 1 Py3
Raspberry Pi 2 and 3 Py3
Libtensorflow MacOS CPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Linux CPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Linux GPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Windows CPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Windows GPU Status Temporarily Unavailable Nightly Binary Official GCS

资源

了解有关TensorFlow社区以及如何做出贡献的更多信息

许可证

Apache License 2.0