问题:读取巨大的.csv文件
我目前正在尝试从Python 2.7中的.csv文件读取数据,该文件最多包含100万行和200列(文件范围从100mb到1.6gb)。对于少于300,000行的文件,我可以(非常缓慢地)执行此操作,但是一旦超过该行,就会出现内存错误。我的代码如下所示:
def getdata(filename, criteria):
    data=[]
    for criterion in criteria:
        data.append(getstuff(filename, criteron))
    return data
def getstuff(filename, criterion):
    import csv
    data=[]
    with open(filename, "rb") as csvfile:
        datareader=csv.reader(csvfile)
        for row in datareader: 
            if row[3]=="column header":
                data.append(row)
            elif len(data)<2 and row[3]!=criterion:
                pass
            elif row[3]==criterion:
                data.append(row)
            else:
                return data在getstuff函数中使用else子句的原因是,所有符合条件的元素都将一起列在csv文件中,因此当我经过它们时,为了节省时间,我离开了循环。
我的问题是:
- 我如何设法使其与较大的文件一起使用? 
- 有什么办法可以使它更快? 
我的计算机具有8gb RAM,运行64位Windows 7,处理器为3.40 GHz(不确定您需要什么信息)。
回答 0
您正在将所有行读入列表,然后处理该列表。不要那样做。
在生成行时对其进行处理。如果需要先过滤数据,请使用生成器函数:
import csv
def getstuff(filename, criterion):
    with open(filename, "rb") as csvfile:
        datareader = csv.reader(csvfile)
        yield next(datareader)  # yield the header row
        count = 0
        for row in datareader:
            if row[3] == criterion:
                yield row
                count += 1
            elif count:
                # done when having read a consecutive series of rows 
                return我还简化了您的过滤器测试;逻辑相同,但更为简洁。
因为只匹配与条件匹配的单个行序列,所以还可以使用:
import csv
from itertools import dropwhile, takewhile
def getstuff(filename, criterion):
    with open(filename, "rb") as csvfile:
        datareader = csv.reader(csvfile)
        yield next(datareader)  # yield the header row
        # first row, plus any subsequent rows that match, then stop
        # reading altogether
        # Python 2: use `for row in takewhile(...): yield row` instead
        # instead of `yield from takewhile(...)`.
        yield from takewhile(
            lambda r: r[3] == criterion,
            dropwhile(lambda r: r[3] != criterion, datareader))
        return您现在可以getstuff()直接循环。在getdata():
def getdata(filename, criteria):
    for criterion in criteria:
        for row in getstuff(filename, criterion):
            yield row现在直接getdata()在您的代码中循环:
for row in getdata(somefilename, sequence_of_criteria):
    # process row现在,您仅在内存中保留一行,而不是每个条件存储数千行。
yield使函数成为生成器函数,这意味着直到开始循环它之前,它不会做任何工作。
回答 1
尽管Martijin的答案是最好的。这是为初学者处理大型csv文件的更直观的方法。这使您可以一次处理一组行或块。
import pandas as pd
chunksize = 10 ** 8
for chunk in pd.read_csv(filename, chunksize=chunksize):
    process(chunk)回答 2
我进行了大量的振动分析,并研究了大型数据集(数以亿计的点)。我的测试显示pandas.read_csv()函数比numpy.genfromtxt()快20倍。genfromtxt()函数比numpy.loadtxt()快3倍。似乎您需要大数据集的熊猫。
我在博客上讨论了用于测试的代码和数据集,该博客讨论了MATLAB vs Python进行振动分析。
回答 3
对我有用的是而且超快速的是
import pandas as pd
import dask.dataframe as dd
import time
t=time.clock()
df_train = dd.read_csv('../data/train.csv', usecols=[col1, col2])
df_train=df_train.compute()
print("load train: " , time.clock()-t)另一个可行的解决方案是:
import pandas as pd 
from tqdm import tqdm
PATH = '../data/train.csv'
chunksize = 500000 
traintypes = {
'col1':'category',
'col2':'str'}
cols = list(traintypes.keys())
df_list = [] # list to hold the batch dataframe
for df_chunk in tqdm(pd.read_csv(PATH, usecols=cols, dtype=traintypes, chunksize=chunksize)):
    # Can process each chunk of dataframe here
    # clean_data(), feature_engineer(),fit()
    # Alternatively, append the chunk to list and merge all
    df_list.append(df_chunk) 
# Merge all dataframes into one dataframe
X = pd.concat(df_list)
# Delete the dataframe list to release memory
del df_list
del df_chunk回答 4
对于着陆这个问题的人。将熊猫与’ chunksize ‘和’ usecols ‘ 一起使用,比其他建议的选项更快地读取了一个巨大的zip文件。
import pandas as pd
sample_cols_to_keep =['col_1', 'col_2', 'col_3', 'col_4','col_5']
# First setup dataframe iterator, ‘usecols’ parameter filters the columns, and 'chunksize' sets the number of rows per chunk in the csv. (you can change these parameters as you wish)
df_iter = pd.read_csv('../data/huge_csv_file.csv.gz', compression='gzip', chunksize=20000, usecols=sample_cols_to_keep) 
# this list will store the filtered dataframes for later concatenation 
df_lst = [] 
# Iterate over the file based on the criteria and append to the list
for df_ in df_iter: 
        tmp_df = (df_.rename(columns={col: col.lower() for col in df_.columns}) # filter eg. rows where 'col_1' value grater than one
                                  .pipe(lambda x:  x[x.col_1 > 0] ))
        df_lst += [tmp_df.copy()] 
# And finally combine filtered df_lst into the final lareger output say 'df_final' dataframe 
df_final = pd.concat(df_lst)回答 5
这是Python3的另一个解决方案:
import csv
with open(filename, "r") as csvfile:
    datareader = csv.reader(csvfile)
    count = 0
    for row in datareader:
        if row[3] in ("column header", criterion):
            doSomething(row)
            count += 1
        elif count > 2:
            break这datareader是一个生成器函数。
回答 6
如果您使用的是熊猫并且有很多RAM(足以将整个文件读入内存),请尝试使用pd.read_csvwith low_memory=False,例如:
import pandas as pd
data = pd.read_csv('file.csv', low_memory=False)
