问题:为什么python dict.update()不返回对象?
我正在尝试:
award_dict = {
"url" : "http://facebook.com",
"imageurl" : "http://farm4.static.flickr.com/3431/3939267074_feb9eb19b1_o.png",
"count" : 1,
}
def award(name, count, points, desc_string, my_size, parent) :
if my_size > count :
a = {
"name" : name,
"description" : desc_string % count,
"points" : points,
"parent_award" : parent,
}
a.update(award_dict)
return self.add_award(a, siteAlias, alias).award
但是,如果觉得该函数真的很麻烦,我宁愿这样做:
return self.add_award({
"name" : name,
"description" : desc_string % count,
"points" : points,
"parent_award" : parent,
}.update(award_dict), siteAlias, alias).award
为什么不更新返回对象,以便您可以链接?
JQuery这样做是为了进行链接。为什么在python中不可接受?
I ‘m trying to do :
award_dict = {
"url" : "http://facebook.com",
"imageurl" : "http://farm4.static.flickr.com/3431/3939267074_feb9eb19b1_o.png",
"count" : 1,
}
def award(name, count, points, desc_string, my_size, parent) :
if my_size > count :
a = {
"name" : name,
"description" : desc_string % count,
"points" : points,
"parent_award" : parent,
}
a.update(award_dict)
return self.add_award(a, siteAlias, alias).award
But if felt really cumbersome in the function, and I would have rather done :
return self.add_award({
"name" : name,
"description" : desc_string % count,
"points" : points,
"parent_award" : parent,
}.update(award_dict), siteAlias, alias).award
Why doesn’t update return the object so you can chain?
JQuery does this to do chaining. Why isn’t it acceptable in python?
回答 0
Python大多实现了务实的命令查询分离风格:mutator返回None
(带有务实的异常,例如pop
;-),因此它们不可能与访问器混淆(同样,赋值不是表达式,语句-表达式分离,依此类推)。
这并不意味着没有很多方法可以在您真正想要的时候将它们合并,例如,dict(a, **award_dict)
做出一个新的字典,就像您希望.update
返回的字典一样。所以,如果您真的觉得很重要,那就为什么不使用THAT ?
编辑:顺便说一句,在您的特定情况下,无需a
按照以下方式进行创建:
dict(name=name, description=desc % count, points=points, parent_award=parent,
**award_dict)
创建一个具有与您的语义完全相同的语义的dict a.update(award_dict)
(包括在发生冲突的情况下,in中的条目award_dict
会覆盖您明确提供的条目的事实;要获取其他语义,即,使显式条目“赢得”此类冲突,award_dict
作为唯一的位置 arg 传递,在关键字“>” 之前传递,并丧失**
形式- dict(award_dict, name=name
等等)。
Python’s mostly implementing a pragmatically tinged flavor of command-query separation: mutators return None
(with pragmatically induced exceptions such as pop
;-) so they can’t possibly be confused with accessors (and in the same vein, assignment is not an expression, the statement-expression separation is there, and so forth).
That doesn’t mean there aren’t a lot of ways to merge things up when you really want, e.g., dict(a, **award_dict)
makes a new dict much like the one you appear to wish .update
returned — so why not use THAT if you really feel it’s important?
Edit: btw, no need, in your specific case, to create a
along the way, either:
dict(name=name, description=desc % count, points=points, parent_award=parent,
**award_dict)
creates a single dict with exactly the same semantics as your a.update(award_dict)
(including, in case of conflicts, the fact that entries in award_dict
override those you’re giving explicitly; to get the other semantics, i.e., to have explicit entries “winning” such conflicts, pass award_dict
as the sole positional arg, before the keyword ones, and bereft of the **
form — dict(award_dict, name=name
etc etc).
回答 1
按照惯例,Python的API区分过程和函数。函数根据其参数(包括任何目标对象)计算新值;过程会修改对象,并且不返回任何内容(即,它们返回None)。因此,程序具有副作用,而功能则没有。更新是一个过程,因此它不返回值。
这样做的动机是,否则可能会导致不良的副作用。考虑
bar = foo.reverse()
如果reverse(也将反向替换列表)也返回列表,则用户可能会认为reverse返回一个新列表,该列表已分配给bar,而永远不会注意到foo也被修改了。通过使反向返回为“无”,他们可以立即认识到bar不是反向的结果,并且看起来更接近反向的效果。
Python’s API, by convention, distinguishes between procedures and functions. Functions compute new values out of their parameters (including any target object); procedures modify objects and don’t return anything (i.e. they return None). So procedures have side effects, functions don’t. update is a procedure, hence it doesn’t return a value.
The motivation for doing it that way is that otherwise, you may get undesirable side effects. Consider
bar = foo.reverse()
If reverse (which reverses the list in-place) would also return the list, users may think that reverse returns a new list which gets assigned to bar, and never notice that foo also gets modified. By making reverse return None, they immediately recognize that bar is not the result of the reversal, and will look more close what the effect of reverse is.
回答 2
这很容易,因为:
(lambda d: d.update(dict2) or d)(d1)
This is easy as:
(lambda d: d.update(dict2) or d)(d1)
回答 3
>>> dict_merge = lambda a,b: a.update(b) or a
>>> dict_merge({'a':1, 'b':3},{'c':5})
{'a': 1, 'c': 5, 'b': 3}
请注意,除了返回合并的字典外,它还会就地修改第一个参数。因此dict_merge(a,b)将修改a。
或者,当然,您可以全部内联:
>>> (lambda a,b: a.update(b) or a)({'a':1, 'b':3},{'c':5})
{'a': 1, 'c': 5, 'b': 3}
>>> dict_merge = lambda a,b: a.update(b) or a
>>> dict_merge({'a':1, 'b':3},{'c':5})
{'a': 1, 'c': 5, 'b': 3}
Note that as well as returning the merged dict, it modifies the first parameter in-place. So dict_merge(a,b) will modify a.
Or, of course, you can do it all inline:
>>> (lambda a,b: a.update(b) or a)({'a':1, 'b':3},{'c':5})
{'a': 1, 'c': 5, 'b': 3}
回答 4
没有足够的声誉来评论顶部答案
@beardc这似乎不是CPython。PyPy给我“ TypeError:关键字必须是字符串”
之所以**kwargs
只能使用解决方案,是因为要合并的字典仅具有string类型的键。
即
>>> dict({1:2}, **{3:4})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
与
>>> dict({1:2}, **{'3':4})
{1: 2, '3': 4}
not enough reputation for comment left on top answer
@beardc this doesn’t seem to be CPython thing. PyPy gives me “TypeError: keywords must be strings”
The solution with **kwargs
only works because the dictionary to be merged only has keys of type string.
i.e.
>>> dict({1:2}, **{3:4})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: keyword arguments must be strings
vs
>>> dict({1:2}, **{'3':4})
{1: 2, '3': 4}
回答 5
不是说它不被接受,而是不是那样dicts
实现的。
如果您查看Django的ORM,它将充分利用链接。不劝阻它,您甚至可以继承dict
并仅重写update
以执行update和return self
,如果您确实需要的话。
class myDict(dict):
def update(self, *args):
dict.update(self, *args)
return self
Its not that it isn’t acceptable, but rather that dicts
weren’t implemented that way.
If you look at Django’s ORM, it makes extensive use of chaining. Its not discouraged, you could even inherit from dict
and only override update
to do update and return self
, if you really want it.
class myDict(dict):
def update(self, *args):
dict.update(self, *args)
return self
回答 6
我会尽可能接近您建议的解决方案
from collections import ChainMap
return self.add_award(ChainMap(award_dict, {
"name" : name,
"description" : desc_string % count,
"points" : points,
"parent_award" : parent,
}), siteAlias, alias).award
as close to your proposed solution as I could get
from collections import ChainMap
return self.add_award(ChainMap(award_dict, {
"name" : name,
"description" : desc_string % count,
"points" : points,
"parent_award" : parent,
}), siteAlias, alias).award
回答 7
对于那些迟到的人,我已经安排了一些时间安排(Py 3.7),显示了.update()
保留输入的基础方法看起来要快一点(约5%),而就地更新时则要快得多(约30%)。 。
像往常一样,所有基准都应加一粒盐。
def join2(dict1, dict2, inplace=False):
result = dict1 if inplace else dict1.copy()
result.update(dict2)
return result
def join(*items):
iter_items = iter(items)
result = next(iter_items).copy()
for item in iter_items:
result.update(item)
return result
def update_or(dict1, dict2):
return dict1.update(dict2) or dict1
d1 = {i: str(i) for i in range(1000000)}
d2 = {str(i): i for i in range(1000000)}
%timeit join2(d1, d2)
# 258 ms ± 1.47 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit join(d1, d2)
# 262 ms ± 2.97 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dict(d1, **d2)
# 267 ms ± 2.74 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit {**d1, **d2}
# 267 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
就地操作的时序有些棘手,因此需要在额外的复制操作中进行修改(第一个时序仅供参考):
%timeit dd = d1.copy()
# 44.9 ms ± 495 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit dd = d1.copy(); join2(dd, d2)
# 296 ms ± 2.05 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dd = d1.copy(); join2(dd, d2, True)
# 234 ms ± 1.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dd = d1.copy(); update_or(dd, d2)
# 235 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
For those coming late to the party, I had put some timing together (Py 3.7), showing that .update()
based methods look a bit (~5%) faster when inputs are preserved and noticeably (~30%) faster when just updating in-place.
As usual, all the benchmarks should be taken with a grain of salt.
def join2(dict1, dict2, inplace=False):
result = dict1 if inplace else dict1.copy()
result.update(dict2)
return result
def join(*items):
iter_items = iter(items)
result = next(iter_items).copy()
for item in iter_items:
result.update(item)
return result
def update_or(dict1, dict2):
return dict1.update(dict2) or dict1
d1 = {i: str(i) for i in range(1000000)}
d2 = {str(i): i for i in range(1000000)}
%timeit join2(d1, d2)
# 258 ms ± 1.47 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit join(d1, d2)
# 262 ms ± 2.97 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dict(d1, **d2)
# 267 ms ± 2.74 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit {**d1, **d2}
# 267 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
The timings for the in-place operations are a bit trickier, so it would need to be modified along an extra copy operation (the first timing is just for reference):
%timeit dd = d1.copy()
# 44.9 ms ± 495 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit dd = d1.copy(); join2(dd, d2)
# 296 ms ± 2.05 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dd = d1.copy(); join2(dd, d2, True)
# 234 ms ± 1.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit dd = d1.copy(); update_or(dd, d2)
# 235 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
回答 8
import itertools
dict_merge = lambda *args: dict(itertools.chain(*[d.iteritems() for d in args]))
import itertools
dict_merge = lambda *args: dict(itertools.chain(*[d.iteritems() for d in args]))
回答 9
刚在Python 3.4中尝试过此操作(因此无法使用高级{**dict_1, **dict_2}
语法)。
我希望能够在字典中使用非字符串键,并提供任意数量的字典。
另外,我想制作一本新词典,所以我选择不使用collections.ChainMap
(这是我dict.update
最初不想使用的原因。
这是我最后写的:
def merge_dicts(*dicts):
all_keys = set(k for d in dicts for k in d.keys())
chain_map = ChainMap(*reversed(dicts))
return {k: chain_map[k] for k in all_keys}
merge_maps({'1': 1}, {'2': 2, '3': 3}, {'1': 4, '3': 5})
# {'1': 4, '3': 5, '2': 2}
Just been trying this myself in Python 3.4 (so wasn’t able to use the fancy {**dict_1, **dict_2}
syntax).
I wanted to be able to have non-string keys in dictionaries as well as provide an arbitrary amount of dictionaries.
Also, I wanted to make a new dictionary so I opted to not use collections.ChainMap
(kinda the reason I didn’t want to use dict.update
initially.
Here’s what I ended up writing:
def merge_dicts(*dicts):
all_keys = set(k for d in dicts for k in d.keys())
chain_map = ChainMap(*reversed(dicts))
return {k: chain_map[k] for k in all_keys}
merge_maps({'1': 1}, {'2': 2, '3': 3}, {'1': 4, '3': 5})
# {'1': 4, '3': 5, '2': 2}