使用PyCrypto AES 256加密和解密

问题:使用PyCrypto AES 256加密和解密

我正在尝试使用PyCrypto构建两个接受两个参数的函数:消息和密钥,然后对消息进行加密/解密。

我在网络上找到了几个链接可以帮助我,但每个链接都有缺陷:

在codekoala上,此代码使用os.urandom,PyCrypto不建议这样做。

此外,不能保证我提供给函数的键具有预期的确切长度。我该怎么做才能做到这一点?

另外,有几种模式,推荐哪种?我不知道该怎么用:/

最后,IV到底是什么?我可以提供不同的IV进行加密和解密,还是返回不同的结果?

编辑:删除了代码部分,因为它不安全。

I’m trying to build two functions using PyCrypto that accept two parameters: the message and the key, and then encrypt/decrypt the message.

I found several links on the web to help me out, but each one of them has flaws:

This one at codekoala uses os.urandom, which is discouraged by PyCrypto.

Moreover, the key I give to the function is not guaranteed to have the exact length expected. What can I do to make that happen ?

Also, there are several modes, which one is recommended? I don’t know what to use :/

Finally, what exactly is the IV? Can I provide a different IV for encrypting and decrypting, or will this return in a different result?

Edit: Removed the code part since it was not secure.


回答 0

这是我的实现,并通过一些修复为我工作,并用32字节和iv到16字节增强了密钥和秘密短语的对齐方式:

import base64
import hashlib
from Crypto import Random
from Crypto.Cipher import AES

class AESCipher(object):

    def __init__(self, key): 
        self.bs = AES.block_size
        self.key = hashlib.sha256(key.encode()).digest()

    def encrypt(self, raw):
        raw = self._pad(raw)
        iv = Random.new().read(AES.block_size)
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return base64.b64encode(iv + cipher.encrypt(raw.encode()))

    def decrypt(self, enc):
        enc = base64.b64decode(enc)
        iv = enc[:AES.block_size]
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return self._unpad(cipher.decrypt(enc[AES.block_size:])).decode('utf-8')

    def _pad(self, s):
        return s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs)

    @staticmethod
    def _unpad(s):
        return s[:-ord(s[len(s)-1:])]

Here is my implementation and works for me with some fixes and enhances the alignment of the key and secret phrase with 32 bytes and iv to 16 bytes:

import base64
import hashlib
from Crypto import Random
from Crypto.Cipher import AES

class AESCipher(object):

    def __init__(self, key): 
        self.bs = AES.block_size
        self.key = hashlib.sha256(key.encode()).digest()

    def encrypt(self, raw):
        raw = self._pad(raw)
        iv = Random.new().read(AES.block_size)
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return base64.b64encode(iv + cipher.encrypt(raw.encode()))

    def decrypt(self, enc):
        enc = base64.b64decode(enc)
        iv = enc[:AES.block_size]
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return self._unpad(cipher.decrypt(enc[AES.block_size:])).decode('utf-8')

    def _pad(self, s):
        return s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs)

    @staticmethod
    def _unpad(s):
        return s[:-ord(s[len(s)-1:])]

回答 1

您可能需要以下两个功能:padunpad当输入的长度不是BLOCK_SIZE的倍数时,填充(执行加密时)和-取消填充(执行解密时)。

BS = 16
pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS) 
unpad = lambda s : s[:-ord(s[len(s)-1:])]

所以您要问密钥的长度?您可以使用密钥的md5sum而不是直接使用它。

而且,根据我使用PyCrypto的经验,在输入相同的情况下,IV用于混合加密输出,因此将IV选择为随机字符串,并将其用作加密输出的一部分,然后用它来解密消息。

这是我的实现,希望它将对您有用:

import base64
from Crypto.Cipher import AES
from Crypto import Random

class AESCipher:
    def __init__( self, key ):
        self.key = key

    def encrypt( self, raw ):
        raw = pad(raw)
        iv = Random.new().read( AES.block_size )
        cipher = AES.new( self.key, AES.MODE_CBC, iv )
        return base64.b64encode( iv + cipher.encrypt( raw ) ) 

    def decrypt( self, enc ):
        enc = base64.b64decode(enc)
        iv = enc[:16]
        cipher = AES.new(self.key, AES.MODE_CBC, iv )
        return unpad(cipher.decrypt( enc[16:] ))

You may need the following two functions: pad– to pad(when doing encryption) and unpad– to unpad (when doing decryption) when the length of input is not a multiple of BLOCK_SIZE.

BS = 16
pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS) 
unpad = lambda s : s[:-ord(s[len(s)-1:])]

So you’re asking the length of key? You can use the md5sum of the key rather than use it directly.

More, according to my little experience of using PyCrypto, the IV is used to mix up the output of a encryption when input is same, so the IV is chosen as a random string, and use it as part of the encryption output, and then use it to decrypt the message.

And here’s my implementation, hope it will be useful for you:

import base64
from Crypto.Cipher import AES
from Crypto import Random

class AESCipher:
    def __init__( self, key ):
        self.key = key

    def encrypt( self, raw ):
        raw = pad(raw)
        iv = Random.new().read( AES.block_size )
        cipher = AES.new( self.key, AES.MODE_CBC, iv )
        return base64.b64encode( iv + cipher.encrypt( raw ) ) 

    def decrypt( self, enc ):
        enc = base64.b64decode(enc)
        iv = enc[:16]
        cipher = AES.new(self.key, AES.MODE_CBC, iv )
        return unpad(cipher.decrypt( enc[16:] ))

回答 2

让我解决您有关“模式”的问题。AES256是一种分组密码。它以32字节的密钥和16字节的字符串(称为块)作为输入,并输出一个块。我们在操作模式下使用AES 进行加密。上面的解决方案建议使用CBC,这是一个示例。另一个称为CTR,使用起来更容易一些:

from Crypto.Cipher import AES
from Crypto.Util import Counter
from Crypto import Random

# AES supports multiple key sizes: 16 (AES128), 24 (AES192), or 32 (AES256).
key_bytes = 32

# Takes as input a 32-byte key and an arbitrary-length plaintext and returns a
# pair (iv, ciphtertext). "iv" stands for initialization vector.
def encrypt(key, plaintext):
    assert len(key) == key_bytes

    # Choose a random, 16-byte IV.
    iv = Random.new().read(AES.block_size)

    # Convert the IV to a Python integer.
    iv_int = int(binascii.hexlify(iv), 16) 

    # Create a new Counter object with IV = iv_int.
    ctr = Counter.new(AES.block_size * 8, initial_value=iv_int)

    # Create AES-CTR cipher.
    aes = AES.new(key, AES.MODE_CTR, counter=ctr)

    # Encrypt and return IV and ciphertext.
    ciphertext = aes.encrypt(plaintext)
    return (iv, ciphertext)

# Takes as input a 32-byte key, a 16-byte IV, and a ciphertext, and outputs the
# corresponding plaintext.
def decrypt(key, iv, ciphertext):
    assert len(key) == key_bytes

    # Initialize counter for decryption. iv should be the same as the output of
    # encrypt().
    iv_int = int(iv.encode('hex'), 16) 
    ctr = Counter.new(AES.block_size * 8, initial_value=iv_int)

    # Create AES-CTR cipher.
    aes = AES.new(key, AES.MODE_CTR, counter=ctr)

    # Decrypt and return the plaintext.
    plaintext = aes.decrypt(ciphertext)
    return plaintext

(iv, ciphertext) = encrypt(key, 'hella')
print decrypt(key, iv, ciphertext)

这通常称为AES-CTR。在将AES-CBC与PyCrypto结合使用时,我建议您谨慎使用。原因是它要求您指定填充方案,如其他给出的解决方案所示。通常,如果您对填充不太谨慎,则可以完全破坏加密的攻击

现在,必须注意,密钥必须是一个随机的32字节字符串;密码足够。通常,密钥是这样生成的:

# Nominal way to generate a fresh key. This calls the system's random number
# generator (RNG).
key1 = Random.new().read(key_bytes)

密钥也可以从密码派生

# It's also possible to derive a key from a password, but it's important that
# the password have high entropy, meaning difficult to predict.
password = "This is a rather weak password."

# For added # security, we add a "salt", which increases the entropy.
#
# In this example, we use the same RNG to produce the salt that we used to
# produce key1.
salt_bytes = 8 
salt = Random.new().read(salt_bytes)

# Stands for "Password-based key derivation function 2"
key2 = PBKDF2(password, salt, key_bytes)

上面的一些解决方案建议使用SHA256派生密钥,但这通常被认为是不良的加密做法。查阅Wikipedia,了解更多有关操作模式的信息。

Let me address your question about “modes.” AES256 is a kind of block cipher. It takes as input a 32-byte key and a 16-byte string, called the block and outputs a block. We use AES in a mode of operation in order to encrypt. The solutions above suggest using CBC, which is one example. Another is called CTR, and it’s somewhat easier to use:

from Crypto.Cipher import AES
from Crypto.Util import Counter
from Crypto import Random

# AES supports multiple key sizes: 16 (AES128), 24 (AES192), or 32 (AES256).
key_bytes = 32

# Takes as input a 32-byte key and an arbitrary-length plaintext and returns a
# pair (iv, ciphtertext). "iv" stands for initialization vector.
def encrypt(key, plaintext):
    assert len(key) == key_bytes

    # Choose a random, 16-byte IV.
    iv = Random.new().read(AES.block_size)

    # Convert the IV to a Python integer.
    iv_int = int(binascii.hexlify(iv), 16) 

    # Create a new Counter object with IV = iv_int.
    ctr = Counter.new(AES.block_size * 8, initial_value=iv_int)

    # Create AES-CTR cipher.
    aes = AES.new(key, AES.MODE_CTR, counter=ctr)

    # Encrypt and return IV and ciphertext.
    ciphertext = aes.encrypt(plaintext)
    return (iv, ciphertext)

# Takes as input a 32-byte key, a 16-byte IV, and a ciphertext, and outputs the
# corresponding plaintext.
def decrypt(key, iv, ciphertext):
    assert len(key) == key_bytes

    # Initialize counter for decryption. iv should be the same as the output of
    # encrypt().
    iv_int = int(iv.encode('hex'), 16) 
    ctr = Counter.new(AES.block_size * 8, initial_value=iv_int)

    # Create AES-CTR cipher.
    aes = AES.new(key, AES.MODE_CTR, counter=ctr)

    # Decrypt and return the plaintext.
    plaintext = aes.decrypt(ciphertext)
    return plaintext

(iv, ciphertext) = encrypt(key, 'hella')
print decrypt(key, iv, ciphertext)

This is often referred to as AES-CTR. I would advise caution in using AES-CBC with PyCrypto. The reason is that it requires you to specify the padding scheme, as exemplified by the other solutions given. In general, if you’re not very careful about the padding, there are attacks that completely break encryption!

Now, it’s important to note that the key must be a random, 32-byte string; a password does not suffice. Normally, the key is generated like so:

# Nominal way to generate a fresh key. This calls the system's random number
# generator (RNG).
key1 = Random.new().read(key_bytes)

A key may be derived from a password, too:

# It's also possible to derive a key from a password, but it's important that
# the password have high entropy, meaning difficult to predict.
password = "This is a rather weak password."

# For added # security, we add a "salt", which increases the entropy.
#
# In this example, we use the same RNG to produce the salt that we used to
# produce key1.
salt_bytes = 8 
salt = Random.new().read(salt_bytes)

# Stands for "Password-based key derivation function 2"
key2 = PBKDF2(password, salt, key_bytes)

Some solutions above suggest using SHA256 for deriving the key, but this is generally considered bad cryptographic practice. Check out wikipedia for more on modes of operation.


回答 3

对于想使用urlsafe_b64encode和urlsafe_b64decode的用户,以下是对我有用的版本(花了一些时间处理unicode问题之后)

BS = 16
key = hashlib.md5(settings.SECRET_KEY).hexdigest()[:BS]
pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS)
unpad = lambda s : s[:-ord(s[len(s)-1:])]

class AESCipher:
    def __init__(self, key):
        self.key = key

    def encrypt(self, raw):
        raw = pad(raw)
        iv = Random.new().read(AES.block_size)
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return base64.urlsafe_b64encode(iv + cipher.encrypt(raw)) 

    def decrypt(self, enc):
        enc = base64.urlsafe_b64decode(enc.encode('utf-8'))
        iv = enc[:BS]
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return unpad(cipher.decrypt(enc[BS:]))

For someone who would like to use urlsafe_b64encode and urlsafe_b64decode, here are the version that’re working for me (after spending some time with the unicode issue)

BS = 16
key = hashlib.md5(settings.SECRET_KEY).hexdigest()[:BS]
pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS)
unpad = lambda s : s[:-ord(s[len(s)-1:])]

class AESCipher:
    def __init__(self, key):
        self.key = key

    def encrypt(self, raw):
        raw = pad(raw)
        iv = Random.new().read(AES.block_size)
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return base64.urlsafe_b64encode(iv + cipher.encrypt(raw)) 

    def decrypt(self, enc):
        enc = base64.urlsafe_b64decode(enc.encode('utf-8'))
        iv = enc[:BS]
        cipher = AES.new(self.key, AES.MODE_CBC, iv)
        return unpad(cipher.decrypt(enc[BS:]))

回答 4

您可以使用SHA-1或SHA-256之类的加密哈希函数(不是 Python的内置函数)从任意密码中获取密码短语hash。Python在其标准库中包括对两者的支持:

import hashlib

hashlib.sha1("this is my awesome password").digest() # => a 20 byte string
hashlib.sha256("another awesome password").digest() # => a 32 byte string

您可以仅使用[:16]或来截断加密哈希值,[:24]并且它将在指定长度内保持其安全性。

You can get a passphrase out of an arbitrary password by using a cryptographic hash function (NOT Python’s builtin hash) like SHA-1 or SHA-256. Python includes support for both in its standard library:

import hashlib

hashlib.sha1("this is my awesome password").digest() # => a 20 byte string
hashlib.sha256("another awesome password").digest() # => a 32 byte string

You can truncate a cryptographic hash value just by using [:16] or [:24] and it will retain its security up to the length you specify.


回答 5

感谢其他启发但对我不起作用的答案。

在花了数小时试图弄清楚它是如何工作之后,我想到了下面的实现,并带有最新的PyCryptodomex库(这是我如何在Windows上的virtualenv .. phew中成功设置它的代理)

。在实现时,请记住写下填充,编码,加密步骤(反之亦然)。您必须打包和拆包,并牢记顺序。

导入base64
导入hashlib
从Cryptodome.Cipher导入AES
从Cryptodome.Random导入get_random_bytes

__key__ = hashlib.sha256(b'16个字符的键').digest()

def加密(原始):
    BS = AES.block_size
    pad = lambda s:s +(BS-len%BS)* chr(BS-len%BS)

    原始= base64.b64encode(pad(raw).encode('utf8'))
    iv = get_random_bytes(AES.block_size)
    密码= AES.new(密钥= __密钥__,模式= AES.MODE_CFB,iv = iv)
    返回base64.b64encode(iv + cipher.encrypt(raw))

def解密(enc):
    unpad = lambda s:s [:-ord(s [-1:])]

    enc = base64.b64decode(enc)
    iv = enc [:AES.block_size]
    cipher = AES.new(__ key__,AES.MODE_CFB,iv)
    返回unpad(base64.b64decode(cipher.decrypt(enc [AES.block_size:]))。decode('utf8'))

Grateful for the other answers which inspired but didn’t work for me.

After spending hours trying to figure out how it works, I came up with the implementation below with the newest PyCryptodomex library (it is another story how I managed to set it up behind proxy, on Windows, in a virtualenv.. phew)

Working on your implementation, remember to write down padding, encoding, encrypting steps (and vice versa). You have to pack and unpack keeping in mind the order.

import base64
import hashlib
from Cryptodome.Cipher import AES
from Cryptodome.Random import get_random_bytes

__key__ = hashlib.sha256(b'16-character key').digest()

def encrypt(raw):
    BS = AES.block_size
    pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS)

    raw = base64.b64encode(pad(raw).encode('utf8'))
    iv = get_random_bytes(AES.block_size)
    cipher = AES.new(key= __key__, mode= AES.MODE_CFB,iv= iv)
    return base64.b64encode(iv + cipher.encrypt(raw))

def decrypt(enc):
    unpad = lambda s: s[:-ord(s[-1:])]

    enc = base64.b64decode(enc)
    iv = enc[:AES.block_size]
    cipher = AES.new(__key__, AES.MODE_CFB, iv)
    return unpad(base64.b64decode(cipher.decrypt(enc[AES.block_size:])).decode('utf8'))

回答 6

为了他人的利益,这是我结合@Cyril和@Marcus的答案所获得的解密实现。假定此消息是通过HTTP请求传入的,该消息带有quoted和base64编码。

import base64
import urllib2
from Crypto.Cipher import AES


def decrypt(quotedEncodedEncrypted):
    key = 'SecretKey'

    encodedEncrypted = urllib2.unquote(quotedEncodedEncrypted)

    cipher = AES.new(key)
    decrypted = cipher.decrypt(base64.b64decode(encodedEncrypted))[:16]

    for i in range(1, len(base64.b64decode(encodedEncrypted))/16):
        cipher = AES.new(key, AES.MODE_CBC, base64.b64decode(encodedEncrypted)[(i-1)*16:i*16])
        decrypted += cipher.decrypt(base64.b64decode(encodedEncrypted)[i*16:])[:16]

    return decrypted.strip()

For the benefit of others, here is my decryption implementation which I got to by combining the answers of @Cyril and @Marcus. This assumes that this coming in via HTTP Request with the encryptedText quoted and base64 encoded.

import base64
import urllib2
from Crypto.Cipher import AES


def decrypt(quotedEncodedEncrypted):
    key = 'SecretKey'

    encodedEncrypted = urllib2.unquote(quotedEncodedEncrypted)

    cipher = AES.new(key)
    decrypted = cipher.decrypt(base64.b64decode(encodedEncrypted))[:16]

    for i in range(1, len(base64.b64decode(encodedEncrypted))/16):
        cipher = AES.new(key, AES.MODE_CBC, base64.b64decode(encodedEncrypted)[(i-1)*16:i*16])
        decrypted += cipher.decrypt(base64.b64decode(encodedEncrypted)[i*16:])[:16]

    return decrypted.strip()

回答 7

对此的另一种看法(很大程度上来自上述解决方案),但

  • 使用null进行填充
  • 不使用lambda(从不成为粉丝)
  • 用python 2.7和3.6.5测试

    #!/usr/bin/python2.7
    # you'll have to adjust for your setup, e.g., #!/usr/bin/python3
    
    
    import base64, re
    from Crypto.Cipher import AES
    from Crypto import Random
    from django.conf import settings
    
    class AESCipher:
        """
          Usage:
          aes = AESCipher( settings.SECRET_KEY[:16], 32)
          encryp_msg = aes.encrypt( 'ppppppppppppppppppppppppppppppppppppppppppppppppppppppp' )
          msg = aes.decrypt( encryp_msg )
          print("'{}'".format(msg))
        """
        def __init__(self, key, blk_sz):
            self.key = key
            self.blk_sz = blk_sz
    
        def encrypt( self, raw ):
            if raw is None or len(raw) == 0:
                raise NameError("No value given to encrypt")
            raw = raw + '\0' * (self.blk_sz - len(raw) % self.blk_sz)
            raw = raw.encode('utf-8')
            iv = Random.new().read( AES.block_size )
            cipher = AES.new( self.key.encode('utf-8'), AES.MODE_CBC, iv )
            return base64.b64encode( iv + cipher.encrypt( raw ) ).decode('utf-8')
    
        def decrypt( self, enc ):
            if enc is None or len(enc) == 0:
                raise NameError("No value given to decrypt")
            enc = base64.b64decode(enc)
            iv = enc[:16]
            cipher = AES.new(self.key.encode('utf-8'), AES.MODE_CBC, iv )
            return re.sub(b'\x00*$', b'', cipher.decrypt( enc[16:])).decode('utf-8')

Another take on this (heavily derived from solutions above) but

  • uses null for padding
  • does not use lambda (never been a fan)
  • tested with python 2.7 and 3.6.5

    #!/usr/bin/python2.7
    # you'll have to adjust for your setup, e.g., #!/usr/bin/python3
    
    
    import base64, re
    from Crypto.Cipher import AES
    from Crypto import Random
    from django.conf import settings
    
    class AESCipher:
        """
          Usage:
          aes = AESCipher( settings.SECRET_KEY[:16], 32)
          encryp_msg = aes.encrypt( 'ppppppppppppppppppppppppppppppppppppppppppppppppppppppp' )
          msg = aes.decrypt( encryp_msg )
          print("'{}'".format(msg))
        """
        def __init__(self, key, blk_sz):
            self.key = key
            self.blk_sz = blk_sz
    
        def encrypt( self, raw ):
            if raw is None or len(raw) == 0:
                raise NameError("No value given to encrypt")
            raw = raw + '\0' * (self.blk_sz - len(raw) % self.blk_sz)
            raw = raw.encode('utf-8')
            iv = Random.new().read( AES.block_size )
            cipher = AES.new( self.key.encode('utf-8'), AES.MODE_CBC, iv )
            return base64.b64encode( iv + cipher.encrypt( raw ) ).decode('utf-8')
    
        def decrypt( self, enc ):
            if enc is None or len(enc) == 0:
                raise NameError("No value given to decrypt")
            enc = base64.b64decode(enc)
            iv = enc[:16]
            cipher = AES.new(self.key.encode('utf-8'), AES.MODE_CBC, iv )
            return re.sub(b'\x00*$', b'', cipher.decrypt( enc[16:])).decode('utf-8')
    

回答 8

我都用了CryptoPyCryptodomex库,它是速度极快…

import base64
import hashlib
from Cryptodome.Cipher import AES as domeAES
from Cryptodome.Random import get_random_bytes
from Crypto import Random
from Crypto.Cipher import AES as cryptoAES

BLOCK_SIZE = AES.block_size

key = "my_secret_key".encode()
__key__ = hashlib.sha256(key).digest()
print(__key__)

def encrypt(raw):
    BS = cryptoAES.block_size
    pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS)
    raw = base64.b64encode(pad(raw).encode('utf8'))
    iv = get_random_bytes(cryptoAES.block_size)
    cipher = cryptoAES.new(key= __key__, mode= cryptoAES.MODE_CFB,iv= iv)
    a= base64.b64encode(iv + cipher.encrypt(raw))
    IV = Random.new().read(BLOCK_SIZE)
    aes = domeAES.new(__key__, domeAES.MODE_CFB, IV)
    b = base64.b64encode(IV + aes.encrypt(a))
    return b

def decrypt(enc):
    passphrase = __key__
    encrypted = base64.b64decode(enc)
    IV = encrypted[:BLOCK_SIZE]
    aes = domeAES.new(passphrase, domeAES.MODE_CFB, IV)
    enc = aes.decrypt(encrypted[BLOCK_SIZE:])
    unpad = lambda s: s[:-ord(s[-1:])]
    enc = base64.b64decode(enc)
    iv = enc[:cryptoAES.block_size]
    cipher = cryptoAES.new(__key__, cryptoAES.MODE_CFB, iv)
    b=  unpad(base64.b64decode(cipher.decrypt(enc[cryptoAES.block_size:])).decode('utf8'))
    return b

encrypted_data =encrypt("Hi Steven!!!!!")
print(encrypted_data)
print("=======")
decrypted_data = decrypt(encrypted_data)
print(decrypted_data)

I have used both Crypto and PyCryptodomex library and it is blazing fast…

import base64
import hashlib
from Cryptodome.Cipher import AES as domeAES
from Cryptodome.Random import get_random_bytes
from Crypto import Random
from Crypto.Cipher import AES as cryptoAES

BLOCK_SIZE = AES.block_size

key = "my_secret_key".encode()
__key__ = hashlib.sha256(key).digest()
print(__key__)

def encrypt(raw):
    BS = cryptoAES.block_size
    pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS)
    raw = base64.b64encode(pad(raw).encode('utf8'))
    iv = get_random_bytes(cryptoAES.block_size)
    cipher = cryptoAES.new(key= __key__, mode= cryptoAES.MODE_CFB,iv= iv)
    a= base64.b64encode(iv + cipher.encrypt(raw))
    IV = Random.new().read(BLOCK_SIZE)
    aes = domeAES.new(__key__, domeAES.MODE_CFB, IV)
    b = base64.b64encode(IV + aes.encrypt(a))
    return b

def decrypt(enc):
    passphrase = __key__
    encrypted = base64.b64decode(enc)
    IV = encrypted[:BLOCK_SIZE]
    aes = domeAES.new(passphrase, domeAES.MODE_CFB, IV)
    enc = aes.decrypt(encrypted[BLOCK_SIZE:])
    unpad = lambda s: s[:-ord(s[-1:])]
    enc = base64.b64decode(enc)
    iv = enc[:cryptoAES.block_size]
    cipher = cryptoAES.new(__key__, cryptoAES.MODE_CFB, iv)
    b=  unpad(base64.b64decode(cipher.decrypt(enc[cryptoAES.block_size:])).decode('utf8'))
    return b

encrypted_data =encrypt("Hi Steven!!!!!")
print(encrypted_data)
print("=======")
decrypted_data = decrypt(encrypted_data)
print(decrypted_data)

回答 9

还不晚,但是我认为这将非常有帮助。没有人提及像PKCS#7填充这样的使用方案。您可以使用它代替以前的函数进行填充(加密时)和取消填充(解密时)。i将在下面提供完整的源代码。

import base64
import hashlib
from Crypto import Random
from Crypto.Cipher import AES
import pkcs7
class Encryption:

    def __init__(self):
        pass

    def Encrypt(self, PlainText, SecurePassword):
        pw_encode = SecurePassword.encode('utf-8')
        text_encode = PlainText.encode('utf-8')

        key = hashlib.sha256(pw_encode).digest()
        iv = Random.new().read(AES.block_size)

        cipher = AES.new(key, AES.MODE_CBC, iv)
        pad_text = pkcs7.encode(text_encode)
        msg = iv + cipher.encrypt(pad_text)

        EncodeMsg = base64.b64encode(msg)
        return EncodeMsg

    def Decrypt(self, Encrypted, SecurePassword):
        decodbase64 = base64.b64decode(Encrypted.decode("utf-8"))
        pw_encode = SecurePassword.decode('utf-8')

        iv = decodbase64[:AES.block_size]
        key = hashlib.sha256(pw_encode).digest()

        cipher = AES.new(key, AES.MODE_CBC, iv)
        msg = cipher.decrypt(decodbase64[AES.block_size:])
        pad_text = pkcs7.decode(msg)

        decryptedString = pad_text.decode('utf-8')
        return decryptedString

import StringIO
import binascii


def decode(text, k=16):
    nl = len(text)
    val = int(binascii.hexlify(text[-1]), 16)
    if val > k:
        raise ValueError('Input is not padded or padding is corrupt')

    l = nl - val
    return text[:l]


def encode(text, k=16):
    l = len(text)
    output = StringIO.StringIO()
    val = k - (l % k)
    for _ in xrange(val):
        output.write('%02x' % val)
    return text + binascii.unhexlify(output.getvalue())

It’s little late but i think this will be very helpful. No one mention about use scheme like PKCS#7 padding. You can use it instead the previous functions to pad(when do encryption) and unpad(when do decryption).i will provide the full Source Code below.

import base64
import hashlib
from Crypto import Random
from Crypto.Cipher import AES
import pkcs7
class Encryption:

    def __init__(self):
        pass

    def Encrypt(self, PlainText, SecurePassword):
        pw_encode = SecurePassword.encode('utf-8')
        text_encode = PlainText.encode('utf-8')

        key = hashlib.sha256(pw_encode).digest()
        iv = Random.new().read(AES.block_size)

        cipher = AES.new(key, AES.MODE_CBC, iv)
        pad_text = pkcs7.encode(text_encode)
        msg = iv + cipher.encrypt(pad_text)

        EncodeMsg = base64.b64encode(msg)
        return EncodeMsg

    def Decrypt(self, Encrypted, SecurePassword):
        decodbase64 = base64.b64decode(Encrypted.decode("utf-8"))
        pw_encode = SecurePassword.decode('utf-8')

        iv = decodbase64[:AES.block_size]
        key = hashlib.sha256(pw_encode).digest()

        cipher = AES.new(key, AES.MODE_CBC, iv)
        msg = cipher.decrypt(decodbase64[AES.block_size:])
        pad_text = pkcs7.decode(msg)

        decryptedString = pad_text.decode('utf-8')
        return decryptedString

import StringIO
import binascii


def decode(text, k=16):
    nl = len(text)
    val = int(binascii.hexlify(text[-1]), 16)
    if val > k:
        raise ValueError('Input is not padded or padding is corrupt')

    l = nl - val
    return text[:l]


def encode(text, k=16):
    l = len(text)
    output = StringIO.StringIO()
    val = k - (l % k)
    for _ in xrange(val):
        output.write('%02x' % val)
    return text + binascii.unhexlify(output.getvalue())


回答 10

https://stackoverflow.com/a/21928790/11402877

兼容的utf-8编码

def _pad(self, s):
    s = s.encode()
    res = s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs).encode()
    return res

https://stackoverflow.com/a/21928790/11402877

compatible utf-8 encoding

def _pad(self, s):
    s = s.encode()
    res = s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs).encode()
    return res

回答 11

from Crypto import Random
from Crypto.Cipher import AES
import base64

BLOCK_SIZE=16
def trans(key):
     return md5.new(key).digest()

def encrypt(message, passphrase):
    passphrase = trans(passphrase)
    IV = Random.new().read(BLOCK_SIZE)
    aes = AES.new(passphrase, AES.MODE_CFB, IV)
    return base64.b64encode(IV + aes.encrypt(message))

def decrypt(encrypted, passphrase):
    passphrase = trans(passphrase)
    encrypted = base64.b64decode(encrypted)
    IV = encrypted[:BLOCK_SIZE]
    aes = AES.new(passphrase, AES.MODE_CFB, IV)
    return aes.decrypt(encrypted[BLOCK_SIZE:])
from Crypto import Random
from Crypto.Cipher import AES
import base64

BLOCK_SIZE=16
def trans(key):
     return md5.new(key).digest()

def encrypt(message, passphrase):
    passphrase = trans(passphrase)
    IV = Random.new().read(BLOCK_SIZE)
    aes = AES.new(passphrase, AES.MODE_CFB, IV)
    return base64.b64encode(IV + aes.encrypt(message))

def decrypt(encrypted, passphrase):
    passphrase = trans(passphrase)
    encrypted = base64.b64decode(encrypted)
    IV = encrypted[:BLOCK_SIZE]
    aes = AES.new(passphrase, AES.MODE_CFB, IV)
    return aes.decrypt(encrypted[BLOCK_SIZE:])