问题:在numpy向量中找到最频繁的数字
假设我在python中有以下列表:
a = [1,2,3,1,2,1,1,1,3,2,2,1]
如何以一种简洁的方式在此列表中找到最频繁的号码?
Suppose I have the following list in python:
a = [1,2,3,1,2,1,1,1,3,2,2,1]
How to find the most frequent number in this list in a neat way?
回答 0
如果您的列表包含所有非负整数,则应查看numpy.bincounts:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html
然后可能使用np.argmax:
a = np.array([1,2,3,1,2,1,1,1,3,2,2,1])
counts = np.bincount(a)
print np.argmax(counts)
对于更复杂的列表(可能包含负数或非整数值),可以np.histogram
类似的方式使用。另外,如果您只想在python中工作而不使用numpy,collections.Counter
则是处理此类数据的一种好方法。
from collections import Counter
a = [1,2,3,1,2,1,1,1,3,2,2,1]
b = Counter(a)
print b.most_common(1)
If your list contains all non-negative ints, you should take a look at numpy.bincounts:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html
and then probably use np.argmax:
a = np.array([1,2,3,1,2,1,1,1,3,2,2,1])
counts = np.bincount(a)
print(np.argmax(counts))
For a more complicated list (that perhaps contains negative numbers or non-integer values), you can use np.histogram
in a similar way. Alternatively, if you just want to work in python without using numpy, collections.Counter
is a good way of handling this sort of data.
from collections import Counter
a = [1,2,3,1,2,1,1,1,3,2,2,1]
b = Counter(a)
print(b.most_common(1))
回答 1
您可以使用
(values,counts) = np.unique(a,return_counts=True)
ind=np.argmax(counts)
print values[ind] # prints the most frequent element
如果某个元素与另一个元素一样频繁,则此代码将仅返回第一个元素。
You may use
(values,counts) = np.unique(a,return_counts=True)
ind=np.argmax(counts)
print values[ind] # prints the most frequent element
If some element is as frequent as another one, this code will return only the first element.
回答 2
如果您愿意使用SciPy:
>>> from scipy.stats import mode
>>> mode([1,2,3,1,2,1,1,1,3,2,2,1])
(array([ 1.]), array([ 6.]))
>>> most_frequent = mode([1,2,3,1,2,1,1,1,3,2,2,1])[0][0]
>>> most_frequent
1.0
If you’re willing to use SciPy:
>>> from scipy.stats import mode
>>> mode([1,2,3,1,2,1,1,1,3,2,2,1])
(array([ 1.]), array([ 6.]))
>>> most_frequent = mode([1,2,3,1,2,1,1,1,3,2,2,1])[0][0]
>>> most_frequent
1.0
回答 3
在此处找到一些解决方案的性能(使用iPython):
>>> # small array
>>> a = [12,3,65,33,12,3,123,888000]
>>>
>>> import collections
>>> collections.Counter(a).most_common()[0][0]
3
>>> %timeit collections.Counter(a).most_common()[0][0]
100000 loops, best of 3: 11.3 µs per loop
>>>
>>> import numpy
>>> numpy.bincount(a).argmax()
3
>>> %timeit numpy.bincount(a).argmax()
100 loops, best of 3: 2.84 ms per loop
>>>
>>> import scipy.stats
>>> scipy.stats.mode(a)[0][0]
3.0
>>> %timeit scipy.stats.mode(a)[0][0]
10000 loops, best of 3: 172 µs per loop
>>>
>>> from collections import defaultdict
>>> def jjc(l):
... d = defaultdict(int)
... for i in a:
... d[i] += 1
... return sorted(d.iteritems(), key=lambda x: x[1], reverse=True)[0]
...
>>> jjc(a)[0]
3
>>> %timeit jjc(a)[0]
100000 loops, best of 3: 5.58 µs per loop
>>>
>>> max(map(lambda val: (a.count(val), val), set(a)))[1]
12
>>> %timeit max(map(lambda val: (a.count(val), val), set(a)))[1]
100000 loops, best of 3: 4.11 µs per loop
>>>
对于像这样的小型阵列,最好是“最大”和“设置” 。
根据@David Sanders的说法,如果将数组大小增加到100,000个元素,则“最大w / set”算法最终将是最差的,而“ numpy bincount”方法是最佳的。
Performances (using iPython) for some solutions found here:
>>> # small array
>>> a = [12,3,65,33,12,3,123,888000]
>>>
>>> import collections
>>> collections.Counter(a).most_common()[0][0]
3
>>> %timeit collections.Counter(a).most_common()[0][0]
100000 loops, best of 3: 11.3 µs per loop
>>>
>>> import numpy
>>> numpy.bincount(a).argmax()
3
>>> %timeit numpy.bincount(a).argmax()
100 loops, best of 3: 2.84 ms per loop
>>>
>>> import scipy.stats
>>> scipy.stats.mode(a)[0][0]
3.0
>>> %timeit scipy.stats.mode(a)[0][0]
10000 loops, best of 3: 172 µs per loop
>>>
>>> from collections import defaultdict
>>> def jjc(l):
... d = defaultdict(int)
... for i in a:
... d[i] += 1
... return sorted(d.iteritems(), key=lambda x: x[1], reverse=True)[0]
...
>>> jjc(a)[0]
3
>>> %timeit jjc(a)[0]
100000 loops, best of 3: 5.58 µs per loop
>>>
>>> max(map(lambda val: (a.count(val), val), set(a)))[1]
12
>>> %timeit max(map(lambda val: (a.count(val), val), set(a)))[1]
100000 loops, best of 3: 4.11 µs per loop
>>>
Best is ‘max’ with ‘set’ for small arrays like the problem.
According to @David Sanders, if you increase the array size to something like 100,000 elements, the “max w/set” algorithm ends up being the worst by far whereas the “numpy bincount” method is the best.
回答 4
另外,如果您想获得最频繁的值(正数或负数)而不加载任何模块,则可以使用以下代码:
lVals = [1,2,3,1,2,1,1,1,3,2,2,1]
print max(map(lambda val: (lVals.count(val), val), set(lVals)))
Also if you want to get most frequent value(positive or negative) without loading any modules you can use the following code:
lVals = [1,2,3,1,2,1,1,1,3,2,2,1]
print max(map(lambda val: (lVals.count(val), val), set(lVals)))
回答 5
虽然上面的大多数答案很有用,但在以下情况下您可能会:1)需要它来支持非正整数值(例如浮点数或负整数;-)),以及2)不在Python 2.7上(哪个collections.Counter) 3)不想在代码中添加scipy(甚至numpy)的依赖项,那么纯Python 2.6解决方案就是O(nlogn)(即有效),它就是这样:
from collections import defaultdict
a = [1,2,3,1,2,1,1,1,3,2,2,1]
d = defaultdict(int)
for i in a:
d[i] += 1
most_frequent = sorted(d.iteritems(), key=lambda x: x[1], reverse=True)[0]
While most of the answers above are useful, in case you:
1) need it to support non-positive-integer values (e.g. floats or negative integers ;-)), and
2) aren’t on Python 2.7 (which collections.Counter requires), and
3) prefer not to add the dependency of scipy (or even numpy) to your code, then a purely python 2.6 solution that is O(nlogn) (i.e., efficient) is just this:
from collections import defaultdict
a = [1,2,3,1,2,1,1,1,3,2,2,1]
d = defaultdict(int)
for i in a:
d[i] += 1
most_frequent = sorted(d.iteritems(), key=lambda x: x[1], reverse=True)[0]
回答 6
我喜欢JoshAdel的解决方案。
但是只有一个收获。
该np.bincount()
解决方案仅适用于数字。
如果你有琴弦 collections.Counter
解决方案将为您服务。
I like the solution by JoshAdel.
But there is just one catch.
The np.bincount()
solution only works on numbers.
If you have strings, collections.Counter
solution will work for you.
回答 7
扩展此方法,适用于查找数据模式,在该模式下可能需要实际数组的索引才能查看该值与分布中心的距离。
(_, idx, counts) = np.unique(a, return_index=True, return_counts=True)
index = idx[np.argmax(counts)]
mode = a[index]
记住当len(np.argmax(counts))> 1时放弃该模式
Expanding on this method, applied to finding the mode of the data where you may need the index of the actual array to see how far away the value is from the center of the distribution.
(_, idx, counts) = np.unique(a, return_index=True, return_counts=True)
index = idx[np.argmax(counts)]
mode = a[index]
Remember to discard the mode when len(np.argmax(counts)) > 1
回答 8
在Python 3中,以下应该起作用:
max(set(a), key=lambda x: a.count(x))
In Python 3 the following should work:
max(set(a), key=lambda x: a.count(x))
回答 9
从开始Python 3.4
,标准库包含statistics.mode
返回单个最常见数据点的功能。
from statistics import mode
mode([1, 2, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1])
# 1
如果存在多个具有相同频率的模式,则statistics.mode
返回遇到的第一个模式。
从开始于Python 3.8
,该statistics.multimode
函数将按最先出现的顺序返回最频繁出现的值的列表:
from statistics import multimode
multimode([1, 2, 3, 1, 2])
# [1, 2]
Starting in Python 3.4
, the standard library includes the statistics.mode
function to return the single most common data point.
from statistics import mode
mode([1, 2, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1])
# 1
If there are multiple modes with the same frequency, statistics.mode
returns the first one encountered.
Starting in Python 3.8
, the statistics.multimode
function returns a list of the most frequently occurring values in the order they were first encountered:
from statistics import multimode
multimode([1, 2, 3, 1, 2])
# [1, 2]
回答 10
这是一个纯解决方案,可以使用纯粹的numpy沿轴应用而不管其值如何。我还发现,如果有很多唯一值,这比scipy.stats.mode快得多。
import numpy
def mode(ndarray, axis=0):
# Check inputs
ndarray = numpy.asarray(ndarray)
ndim = ndarray.ndim
if ndarray.size == 1:
return (ndarray[0], 1)
elif ndarray.size == 0:
raise Exception('Cannot compute mode on empty array')
try:
axis = range(ndarray.ndim)[axis]
except:
raise Exception('Axis "{}" incompatible with the {}-dimension array'.format(axis, ndim))
# If array is 1-D and numpy version is > 1.9 numpy.unique will suffice
if all([ndim == 1,
int(numpy.__version__.split('.')[0]) >= 1,
int(numpy.__version__.split('.')[1]) >= 9]):
modals, counts = numpy.unique(ndarray, return_counts=True)
index = numpy.argmax(counts)
return modals[index], counts[index]
# Sort array
sort = numpy.sort(ndarray, axis=axis)
# Create array to transpose along the axis and get padding shape
transpose = numpy.roll(numpy.arange(ndim)[::-1], axis)
shape = list(sort.shape)
shape[axis] = 1
# Create a boolean array along strides of unique values
strides = numpy.concatenate([numpy.zeros(shape=shape, dtype='bool'),
numpy.diff(sort, axis=axis) == 0,
numpy.zeros(shape=shape, dtype='bool')],
axis=axis).transpose(transpose).ravel()
# Count the stride lengths
counts = numpy.cumsum(strides)
counts[~strides] = numpy.concatenate([[0], numpy.diff(counts[~strides])])
counts[strides] = 0
# Get shape of padded counts and slice to return to the original shape
shape = numpy.array(sort.shape)
shape[axis] += 1
shape = shape[transpose]
slices = [slice(None)] * ndim
slices[axis] = slice(1, None)
# Reshape and compute final counts
counts = counts.reshape(shape).transpose(transpose)[slices] + 1
# Find maximum counts and return modals/counts
slices = [slice(None, i) for i in sort.shape]
del slices[axis]
index = numpy.ogrid[slices]
index.insert(axis, numpy.argmax(counts, axis=axis))
return sort[index], counts[index]
Here is a general solution that may be applied along an axis, regardless of values, using purely numpy. I’ve also found that this is much faster than scipy.stats.mode if there are a lot of unique values.
import numpy
def mode(ndarray, axis=0):
# Check inputs
ndarray = numpy.asarray(ndarray)
ndim = ndarray.ndim
if ndarray.size == 1:
return (ndarray[0], 1)
elif ndarray.size == 0:
raise Exception('Cannot compute mode on empty array')
try:
axis = range(ndarray.ndim)[axis]
except:
raise Exception('Axis "{}" incompatible with the {}-dimension array'.format(axis, ndim))
# If array is 1-D and numpy version is > 1.9 numpy.unique will suffice
if all([ndim == 1,
int(numpy.__version__.split('.')[0]) >= 1,
int(numpy.__version__.split('.')[1]) >= 9]):
modals, counts = numpy.unique(ndarray, return_counts=True)
index = numpy.argmax(counts)
return modals[index], counts[index]
# Sort array
sort = numpy.sort(ndarray, axis=axis)
# Create array to transpose along the axis and get padding shape
transpose = numpy.roll(numpy.arange(ndim)[::-1], axis)
shape = list(sort.shape)
shape[axis] = 1
# Create a boolean array along strides of unique values
strides = numpy.concatenate([numpy.zeros(shape=shape, dtype='bool'),
numpy.diff(sort, axis=axis) == 0,
numpy.zeros(shape=shape, dtype='bool')],
axis=axis).transpose(transpose).ravel()
# Count the stride lengths
counts = numpy.cumsum(strides)
counts[~strides] = numpy.concatenate([[0], numpy.diff(counts[~strides])])
counts[strides] = 0
# Get shape of padded counts and slice to return to the original shape
shape = numpy.array(sort.shape)
shape[axis] += 1
shape = shape[transpose]
slices = [slice(None)] * ndim
slices[axis] = slice(1, None)
# Reshape and compute final counts
counts = counts.reshape(shape).transpose(transpose)[slices] + 1
# Find maximum counts and return modals/counts
slices = [slice(None, i) for i in sort.shape]
del slices[axis]
index = numpy.ogrid[slices]
index.insert(axis, numpy.argmax(counts, axis=axis))
return sort[index], counts[index]
回答 11
我最近正在做一个项目,并使用collections.Counter。(这折磨了我)。
我认为收藏中的Counter的表现非常非常差。这只是包装dict()的类。
更糟糕的是,如果使用cProfile来分析其方法,则应该看到很多“ __missing__”和“ __instancecheck__”东西一直在浪费。
使用它的most_common()时要小心,因为每次调用它都会使它变得极其缓慢。如果使用most_common(x),它将调用堆排序,这也很慢。
顺便说一句,numpy的bincount也有一个问题:如果使用np.bincount([1,2,4000000]),您将得到一个包含4000000个元素的数组。
I’m recently doing a project and using collections.Counter.(Which tortured me).
The Counter in collections have a very very bad performance in my opinion. It’s just a class wrapping dict().
What’s worse, If you use cProfile to profile its method, you should see a lot of ‘__missing__’ and ‘__instancecheck__’ stuff wasting the whole time.
Be careful using its most_common(), because everytime it would invoke a sort which makes it extremely slow. and if you use most_common(x), it will invoke a heap sort, which is also slow.
Btw, numpy’s bincount also have a problem: if you use np.bincount([1,2,4000000]), you will get an array with 4000000 elements.