问题:在Python Pandas中向现有DataFrame添加新列

我有以下索引的DataFrame,其中的命名列和行不是连续数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想'e'在现有数据框架中添加一个新列,并且不想更改数据框架中的任何内容(即,新列始终与DataFrame具有相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何e在上述示例中添加列?

I have the following indexed DataFrame with named columns and rows not- continuous numbers:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

I would like to add a new column, 'e', to the existing data frame and do not want to change anything in the data frame (i.e., the new column always has the same length as the DataFrame).

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

How can I add column e to the above example?


回答 0

使用原始的df1索引创建系列:

df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)

编辑2015年
有人报告SettingWithCopyWarning使用此代码。
但是,该代码仍可以在当前的熊猫0.10.1版本中完美运行。

>>> sLength = len(df1['a'])
>>> df1
          a         b         c         d
6 -0.269221 -0.026476  0.997517  1.294385
8  0.917438  0.847941  0.034235 -0.448948

>>> df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e
6 -0.269221 -0.026476  0.997517  1.294385  1.757167
8  0.917438  0.847941  0.034235 -0.448948  2.228131

>>> p.version.short_version
'0.16.1'

SettingWithCopyWarning目标对数据帧的副本通知可能无效转让的。它不一定表示您做错了(它可能会触发误报),但从0.13.0起,它会让您知道有更多适合同一目的的方法。然后,如果收到警告,请遵循其建议:尝试使用.loc [row_index,col_indexer] = value代替

>>> df1.loc[:,'f'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e         f
6 -0.269221 -0.026476  0.997517  1.294385  1.757167 -0.050927
8  0.917438  0.847941  0.034235 -0.448948  2.228131  0.006109
>>> 

实际上,这是目前熊猫文档中描述的更有效的方法


编辑2017

如评论和@Alexander所示,当前最好将Series的值添加为DataFrame的新列的最佳方法是使用assign

df1 = df1.assign(e=pd.Series(np.random.randn(sLength)).values)

Use the original df1 indexes to create the series:

df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)

Edit 2015
Some reported getting the SettingWithCopyWarning with this code.
However, the code still runs perfectly with the current pandas version 0.16.1.

>>> sLength = len(df1['a'])
>>> df1
          a         b         c         d
6 -0.269221 -0.026476  0.997517  1.294385
8  0.917438  0.847941  0.034235 -0.448948

>>> df1['e'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e
6 -0.269221 -0.026476  0.997517  1.294385  1.757167
8  0.917438  0.847941  0.034235 -0.448948  2.228131

>>> p.version.short_version
'0.16.1'

The SettingWithCopyWarning aims to inform of a possibly invalid assignment on a copy of the Dataframe. It doesn’t necessarily say you did it wrong (it can trigger false positives) but from 0.13.0 it let you know there are more adequate methods for the same purpose. Then, if you get the warning, just follow its advise: Try using .loc[row_index,col_indexer] = value instead

>>> df1.loc[:,'f'] = pd.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e         f
6 -0.269221 -0.026476  0.997517  1.294385  1.757167 -0.050927
8  0.917438  0.847941  0.034235 -0.448948  2.228131  0.006109
>>> 

In fact, this is currently the more efficient method as described in pandas docs


Edit 2017

As indicated in the comments and by @Alexander, currently the best method to add the values of a Series as a new column of a DataFrame could be using assign:

df1 = df1.assign(e=pd.Series(np.random.randn(sLength)).values)

回答 1

这是添加新列的简单方法: df['e'] = e

This is the simple way of adding a new column: df['e'] = e


回答 2

我想在现有数据框中添加新列’e’,并且不更改数据框中的任何内容。(该系列的长度总是与数据帧相同。)

我假设中的索引值e与中的索引值匹配df1

初始化名为的新列e并为其分配系列中的值的最简单方法e

df['e'] = e.values

分配(熊猫0.16.0+)

从Pandas 0.16.0开始,您还可以使用assign,它为DataFrame分配新列,并返回一个新对象(副本),该对象除包含新列外还包含所有原始列。

df1 = df1.assign(e=e.values)

按照此示例(还包括assign函数的源代码),您还可以包括多个列:

df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df.assign(mean_a=df.a.mean(), mean_b=df.b.mean())
   a  b  mean_a  mean_b
0  1  3     1.5     3.5
1  2  4     1.5     3.5

在您的示例中:

np.random.seed(0)
df1 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
mask = df1.applymap(lambda x: x <-0.7)
df1 = df1[-mask.any(axis=1)]
sLength = len(df1['a'])
e = pd.Series(np.random.randn(sLength))

>>> df1
          a         b         c         d
0  1.764052  0.400157  0.978738  2.240893
2 -0.103219  0.410599  0.144044  1.454274
3  0.761038  0.121675  0.443863  0.333674
7  1.532779  1.469359  0.154947  0.378163
9  1.230291  1.202380 -0.387327 -0.302303

>>> e
0   -1.048553
1   -1.420018
2   -1.706270
3    1.950775
4   -0.509652
dtype: float64

df1 = df1.assign(e=e.values)

>>> df1
          a         b         c         d         e
0  1.764052  0.400157  0.978738  2.240893 -1.048553
2 -0.103219  0.410599  0.144044  1.454274 -1.420018
3  0.761038  0.121675  0.443863  0.333674 -1.706270
7  1.532779  1.469359  0.154947  0.378163  1.950775
9  1.230291  1.202380 -0.387327 -0.302303 -0.509652

首次引入此新功能时,可以在此处找到说明。

I would like to add a new column, ‘e’, to the existing data frame and do not change anything in the data frame. (The series always got the same length as a dataframe.)

I assume that the index values in e match those in df1.

The easiest way to initiate a new column named e, and assign it the values from your series e:

df['e'] = e.values

assign (Pandas 0.16.0+)

As of Pandas 0.16.0, you can also use assign, which assigns new columns to a DataFrame and returns a new object (a copy) with all the original columns in addition to the new ones.

df1 = df1.assign(e=e.values)

As per this example (which also includes the source code of the assign function), you can also include more than one column:

df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df.assign(mean_a=df.a.mean(), mean_b=df.b.mean())
   a  b  mean_a  mean_b
0  1  3     1.5     3.5
1  2  4     1.5     3.5

In context with your example:

np.random.seed(0)
df1 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
mask = df1.applymap(lambda x: x <-0.7)
df1 = df1[-mask.any(axis=1)]
sLength = len(df1['a'])
e = pd.Series(np.random.randn(sLength))

>>> df1
          a         b         c         d
0  1.764052  0.400157  0.978738  2.240893
2 -0.103219  0.410599  0.144044  1.454274
3  0.761038  0.121675  0.443863  0.333674
7  1.532779  1.469359  0.154947  0.378163
9  1.230291  1.202380 -0.387327 -0.302303

>>> e
0   -1.048553
1   -1.420018
2   -1.706270
3    1.950775
4   -0.509652
dtype: float64

df1 = df1.assign(e=e.values)

>>> df1
          a         b         c         d         e
0  1.764052  0.400157  0.978738  2.240893 -1.048553
2 -0.103219  0.410599  0.144044  1.454274 -1.420018
3  0.761038  0.121675  0.443863  0.333674 -1.706270
7  1.532779  1.469359  0.154947  0.378163  1.950775
9  1.230291  1.202380 -0.387327 -0.302303 -0.509652

The description of this new feature when it was first introduced can be found here.


回答 3

似乎在最新的Pandas版本中,可行的方法是使用df.assign

df1 = df1.assign(e=np.random.randn(sLength))

它不会产生SettingWithCopyWarning

It seems that in recent Pandas versions the way to go is to use df.assign:

df1 = df1.assign(e=np.random.randn(sLength))

It doesn’t produce SettingWithCopyWarning.


回答 4

通过NumPy直接执行此操作将是最有效的:

df1['e'] = np.random.randn(sLength)

请注意,我最初的建议(很旧)是使用map(慢得多):

df1['e'] = df1['a'].map(lambda x: np.random.random())

Doing this directly via NumPy will be the most efficient:

df1['e'] = np.random.randn(sLength)

Note my original (very old) suggestion was to use map (which is much slower):

df1['e'] = df1['a'].map(lambda x: np.random.random())

回答 5

超简单的列分配

将熊猫数据框实现为列的有序字典。

这意味着__getitem__ []不仅可以用于获取特定列,__setitem__ [] =还可以用于分配新列。

例如,只需使用[]访问器,就可以向该数据框添加一列

    size      name color
0    big      rose   red
1  small    violet  blue
2  small     tulip   red
3  small  harebell  blue

df['protected'] = ['no', 'no', 'no', 'yes']

    size      name color protected
0    big      rose   red        no
1  small    violet  blue        no
2  small     tulip   red        no
3  small  harebell  blue       yes

请注意,即使数据框的索引已关闭,此操作也有效。

df.index = [3,2,1,0]
df['protected'] = ['no', 'no', 'no', 'yes']
    size      name color protected
3    big      rose   red        no
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue       yes

[] =是要走的路,但要当心!

但是,如果您有一个pd.Series并尝试将其分配给索引关闭的数据帧,则会遇到麻烦。参见示例:

df['protected'] = pd.Series(['no', 'no', 'no', 'yes'])
    size      name color protected
3    big      rose   red       yes
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue        no

这是因为pd.Series默认情况下,a的索引从0枚举到n。而熊猫[] =方法试图 变得“聪明”

实际发生了什么。

使用[] =方法时,pandas使用左手数据帧的索引和右手序列的索引安静地执行外部联接或外部合并。df['column'] = series

边注

这很快就会引起认知失调,因为该[]=方法试图根据输入来做很多不同的事情,除非您只知道熊猫如何工作的,否则无法预测结果。因此,我建议不要使用[]=in代码库,但是在笔记本中浏览数据时可以使用。

解决问题

如果您有一个pd.Series并且希望从上到下分配它,或者您正在编码生产性代码并且不确定索引顺序,那么为此类问题提供保护是值得的。

您可以将转换pd.Series为a np.ndarray或a list,这可以解决问题。

df['protected'] = pd.Series(['no', 'no', 'no', 'yes']).values

要么

df['protected'] = list(pd.Series(['no', 'no', 'no', 'yes']))

但这不是很明确。

某些编码器可能会说:“嘿,这看起来很多余,我将对其进行优化”。

显式方式

设置的索引pd.Series是的索引df是明确的。

df['protected'] = pd.Series(['no', 'no', 'no', 'yes'], index=df.index)

或更现实的说,您可能pd.Series已经有空了。

protected_series = pd.Series(['no', 'no', 'no', 'yes'])
protected_series.index = df.index

3     no
2     no
1     no
0    yes

现在可以分配

df['protected'] = protected_series

    size      name color protected
3    big      rose   red        no
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue       yes

另一种方式 df.reset_index()

由于索引不一致是问题所在,因此,如果您认为数据框的索引不应该指示事物,则可以简单地删除索引,这应该更快,但是它不是很干净,因为您的函数现在可能做两件事。

df.reset_index(drop=True)
protected_series.reset_index(drop=True)
df['protected'] = protected_series

    size      name color protected
0    big      rose   red        no
1  small    violet  blue        no
2  small     tulip   red        no
3  small  harebell  blue       yes

注意 df.assign

尽管df.assign让您更清楚地知道自己在做什么,但实际上却存在与上述相同的所有问题[]=

df.assign(protected=pd.Series(['no', 'no', 'no', 'yes']))
    size      name color protected
3    big      rose   red       yes
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue        no

请注意df.assign,您的专栏没有被调用self。会导致错误。这很df.assign ,因为函数中存在这些伪像。

df.assign(self=pd.Series(['no', 'no', 'no', 'yes'])
TypeError: assign() got multiple values for keyword argument 'self'

您可能会说,“好吧,那我就不使用了self”。但是谁知道这个函数将来会如何变化以支持新的论点。也许您的列名将成为熊猫新更新中的一个参数,从而导致升级问题。

Super simple column assignment

A pandas dataframe is implemented as an ordered dict of columns.

This means that the __getitem__ [] can not only be used to get a certain column, but __setitem__ [] = can be used to assign a new column.

For example, this dataframe can have a column added to it by simply using the [] accessor

    size      name color
0    big      rose   red
1  small    violet  blue
2  small     tulip   red
3  small  harebell  blue

df['protected'] = ['no', 'no', 'no', 'yes']

    size      name color protected
0    big      rose   red        no
1  small    violet  blue        no
2  small     tulip   red        no
3  small  harebell  blue       yes

Note that this works even if the index of the dataframe is off.

df.index = [3,2,1,0]
df['protected'] = ['no', 'no', 'no', 'yes']
    size      name color protected
3    big      rose   red        no
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue       yes

[]= is the way to go, but watch out!

However, if you have a pd.Series and try to assign it to a dataframe where the indexes are off, you will run in to trouble. See example:

df['protected'] = pd.Series(['no', 'no', 'no', 'yes'])
    size      name color protected
3    big      rose   red       yes
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue        no

This is because a pd.Series by default has an index enumerated from 0 to n. And the pandas [] = method tries to be “smart”

What actually is going on.

When you use the [] = method pandas is quietly performing an outer join or outer merge using the index of the left hand dataframe and the index of the right hand series. df['column'] = series

Side note

This quickly causes cognitive dissonance, since the []= method is trying to do a lot of different things depending on the input, and the outcome cannot be predicted unless you just know how pandas works. I would therefore advice against the []= in code bases, but when exploring data in a notebook, it is fine.

Going around the problem

If you have a pd.Series and want it assigned from top to bottom, or if you are coding productive code and you are not sure of the index order, it is worth it to safeguard for this kind of issue.

You could downcast the pd.Series to a np.ndarray or a list, this will do the trick.

df['protected'] = pd.Series(['no', 'no', 'no', 'yes']).values

or

df['protected'] = list(pd.Series(['no', 'no', 'no', 'yes']))

But this is not very explicit.

Some coder may come along and say “Hey, this looks redundant, I’ll just optimize this away”.

Explicit way

Setting the index of the pd.Series to be the index of the df is explicit.

df['protected'] = pd.Series(['no', 'no', 'no', 'yes'], index=df.index)

Or more realistically, you probably have a pd.Series already available.

protected_series = pd.Series(['no', 'no', 'no', 'yes'])
protected_series.index = df.index

3     no
2     no
1     no
0    yes

Can now be assigned

df['protected'] = protected_series

    size      name color protected
3    big      rose   red        no
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue       yes

Alternative way with df.reset_index()

Since the index dissonance is the problem, if you feel that the index of the dataframe should not dictate things, you can simply drop the index, this should be faster, but it is not very clean, since your function now probably does two things.

df.reset_index(drop=True)
protected_series.reset_index(drop=True)
df['protected'] = protected_series

    size      name color protected
0    big      rose   red        no
1  small    violet  blue        no
2  small     tulip   red        no
3  small  harebell  blue       yes

Note on df.assign

While df.assign make it more explicit what you are doing, it actually has all the same problems as the above []=

df.assign(protected=pd.Series(['no', 'no', 'no', 'yes']))
    size      name color protected
3    big      rose   red       yes
2  small    violet  blue        no
1  small     tulip   red        no
0  small  harebell  blue        no

Just watch out with df.assign that your column is not called self. It will cause errors. This makes df.assign smelly, since there are these kind of artifacts in the function.

df.assign(self=pd.Series(['no', 'no', 'no', 'yes'])
TypeError: assign() got multiple values for keyword argument 'self'

You may say, “Well, I’ll just not use self then”. But who knows how this function changes in the future to support new arguments. Maybe your column name will be an argument in a new update of pandas, causing problems with upgrading.


回答 6

最简单的方法:

data['new_col'] = list_of_values

data.loc[ : , 'new_col'] = list_of_values

这样,您可以在熊猫对象中设置新值时避免所谓的链接索引。单击此处以进一步阅读

Easiest ways:-

data['new_col'] = list_of_values

data.loc[ : , 'new_col'] = list_of_values

This way you avoid what is called chained indexing when setting new values in a pandas object. Click here to read further.


回答 7

如果您要将整个新列设置为初始基值(例如None),则可以执行以下操作:df1['e'] = None

实际上,这将为单元分配“对象”类型。因此,稍后您可以将复杂的数据类型(如列表)放到单个单元格中。

If you want to set the whole new column to an initial base value (e.g. None), you can do this: df1['e'] = None

This actually would assign “object” type to the cell. So later you’re free to put complex data types, like list, into individual cells.


回答 8

我感到恐惧SettingWithCopyWarning,并且无法通过使用iloc语法进行修复。我的DataFrame是由ODBC源中的read_sql创建的。使用上面lowtech的建议,以下内容对我有用:

df.insert(len(df.columns), 'e', pd.Series(np.random.randn(sLength),  index=df.index))

这样可以很好地在最后插入列。我不知道这是否是最有效的,但我不喜欢警告消息。我认为有一个更好的解决方案,但我找不到它,并且我认为它取决于索引的某些方面。
注意。这只能工作一次,并且如果尝试覆盖现有列会给出错误消息。
注意如上所述,从0.16.0开始分配是最佳解决方案。请参阅文档http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.assign.html#pandas.DataFrame.assign 对于不覆盖中间值的数据流类型而言效果很好。

I got the dreaded SettingWithCopyWarning, and it wasn’t fixed by using the iloc syntax. My DataFrame was created by read_sql from an ODBC source. Using a suggestion by lowtech above, the following worked for me:

df.insert(len(df.columns), 'e', pd.Series(np.random.randn(sLength),  index=df.index))

This worked fine to insert the column at the end. I don’t know if it is the most efficient, but I don’t like warning messages. I think there is a better solution, but I can’t find it, and I think it depends on some aspect of the index.
Note. That this only works once and will give an error message if trying to overwrite and existing column.
Note As above and from 0.16.0 assign is the best solution. See documentation http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.assign.html#pandas.DataFrame.assign Works well for data flow type where you don’t overwrite your intermediate values.


回答 9

  1. 首先创建一个list_of_e具有相关数据的python 。
  2. 用这个: df['e'] = list_of_e
  1. First create a python’s list_of_e that has relevant data.
  2. Use this: df['e'] = list_of_e

回答 10

如果您要添加的列是一个系列变量,则只需:

df["new_columns_name"]=series_variable_name #this will do it for you

即使您要替换现有的列,此方法也能很好地工作,只需键入与要替换的列相同的new_columns_name,它将用新的系列数据覆盖现有的列数据。

If the column you are trying to add is a series variable then just :

df["new_columns_name"]=series_variable_name #this will do it for you

This works well even if you are replacing an existing column.just type the new_columns_name same as the column you want to replace.It will just overwrite the existing column data with the new series data.


回答 11

如果数据框和Series对象具有相同的index,则pandas.concat也可以在这里工作:

import pandas as pd
df
#          a            b           c           d
#0  0.671399     0.101208   -0.181532    0.241273
#1  0.446172    -0.243316    0.051767    1.577318
#2  0.614758     0.075793   -0.451460   -0.012493

e = pd.Series([-0.335485, -1.166658, -0.385571])    
e
#0   -0.335485
#1   -1.166658
#2   -0.385571
#dtype: float64

# here we need to give the series object a name which converts to the new  column name 
# in the result
df = pd.concat([df, e.rename("e")], axis=1)
df

#          a            b           c           d           e
#0  0.671399     0.101208   -0.181532    0.241273   -0.335485
#1  0.446172    -0.243316    0.051767    1.577318   -1.166658
#2  0.614758     0.075793   -0.451460   -0.012493   -0.385571

如果它们没有相同的索引:

e.index = df.index
df = pd.concat([df, e.rename("e")], axis=1)

If the data frame and Series object have the same index, pandas.concat also works here:

import pandas as pd
df
#          a            b           c           d
#0  0.671399     0.101208   -0.181532    0.241273
#1  0.446172    -0.243316    0.051767    1.577318
#2  0.614758     0.075793   -0.451460   -0.012493

e = pd.Series([-0.335485, -1.166658, -0.385571])    
e
#0   -0.335485
#1   -1.166658
#2   -0.385571
#dtype: float64

# here we need to give the series object a name which converts to the new  column name 
# in the result
df = pd.concat([df, e.rename("e")], axis=1)
df

#          a            b           c           d           e
#0  0.671399     0.101208   -0.181532    0.241273   -0.335485
#1  0.446172    -0.243316    0.051767    1.577318   -1.166658
#2  0.614758     0.075793   -0.451460   -0.012493   -0.385571

In case they don’t have the same index:

e.index = df.index
df = pd.concat([df, e.rename("e")], axis=1)

回答 12

万无一失:

df.loc[:, 'NewCol'] = 'New_Val'

例:

df = pd.DataFrame(data=np.random.randn(20, 4), columns=['A', 'B', 'C', 'D'])

df

           A         B         C         D
0  -0.761269  0.477348  1.170614  0.752714
1   1.217250 -0.930860 -0.769324 -0.408642
2  -0.619679 -1.227659 -0.259135  1.700294
3  -0.147354  0.778707  0.479145  2.284143
4  -0.529529  0.000571  0.913779  1.395894
5   2.592400  0.637253  1.441096 -0.631468
6   0.757178  0.240012 -0.553820  1.177202
7  -0.986128 -1.313843  0.788589 -0.707836
8   0.606985 -2.232903 -1.358107 -2.855494
9  -0.692013  0.671866  1.179466 -1.180351
10 -1.093707 -0.530600  0.182926 -1.296494
11 -0.143273 -0.503199 -1.328728  0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832  0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15  0.955298 -1.430019  1.434071 -0.088215
16 -0.227946  0.047462  0.373573 -0.111675
17  1.627912  0.043611  1.743403 -0.012714
18  0.693458  0.144327  0.329500 -0.655045
19  0.104425  0.037412  0.450598 -0.923387


df.drop([3, 5, 8, 10, 18], inplace=True)

df

           A         B         C         D
0  -0.761269  0.477348  1.170614  0.752714
1   1.217250 -0.930860 -0.769324 -0.408642
2  -0.619679 -1.227659 -0.259135  1.700294
4  -0.529529  0.000571  0.913779  1.395894
6   0.757178  0.240012 -0.553820  1.177202
7  -0.986128 -1.313843  0.788589 -0.707836
9  -0.692013  0.671866  1.179466 -1.180351
11 -0.143273 -0.503199 -1.328728  0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832  0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15  0.955298 -1.430019  1.434071 -0.088215
16 -0.227946  0.047462  0.373573 -0.111675
17  1.627912  0.043611  1.743403 -0.012714
19  0.104425  0.037412  0.450598 -0.923387

df.loc[:, 'NewCol'] = 0

df
           A         B         C         D  NewCol
0  -0.761269  0.477348  1.170614  0.752714       0
1   1.217250 -0.930860 -0.769324 -0.408642       0
2  -0.619679 -1.227659 -0.259135  1.700294       0
4  -0.529529  0.000571  0.913779  1.395894       0
6   0.757178  0.240012 -0.553820  1.177202       0
7  -0.986128 -1.313843  0.788589 -0.707836       0
9  -0.692013  0.671866  1.179466 -1.180351       0
11 -0.143273 -0.503199 -1.328728  0.610552       0
12 -0.923110 -1.365890 -1.366202 -1.185999       0
13 -2.026832  0.273593 -0.440426 -0.627423       0
14 -0.054503 -0.788866 -0.228088 -0.404783       0
15  0.955298 -1.430019  1.434071 -0.088215       0
16 -0.227946  0.047462  0.373573 -0.111675       0
17  1.627912  0.043611  1.743403 -0.012714       0
19  0.104425  0.037412  0.450598 -0.923387       0

Foolproof:

df.loc[:, 'NewCol'] = 'New_Val'

Example:

df = pd.DataFrame(data=np.random.randn(20, 4), columns=['A', 'B', 'C', 'D'])

df

           A         B         C         D
0  -0.761269  0.477348  1.170614  0.752714
1   1.217250 -0.930860 -0.769324 -0.408642
2  -0.619679 -1.227659 -0.259135  1.700294
3  -0.147354  0.778707  0.479145  2.284143
4  -0.529529  0.000571  0.913779  1.395894
5   2.592400  0.637253  1.441096 -0.631468
6   0.757178  0.240012 -0.553820  1.177202
7  -0.986128 -1.313843  0.788589 -0.707836
8   0.606985 -2.232903 -1.358107 -2.855494
9  -0.692013  0.671866  1.179466 -1.180351
10 -1.093707 -0.530600  0.182926 -1.296494
11 -0.143273 -0.503199 -1.328728  0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832  0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15  0.955298 -1.430019  1.434071 -0.088215
16 -0.227946  0.047462  0.373573 -0.111675
17  1.627912  0.043611  1.743403 -0.012714
18  0.693458  0.144327  0.329500 -0.655045
19  0.104425  0.037412  0.450598 -0.923387


df.drop([3, 5, 8, 10, 18], inplace=True)

df

           A         B         C         D
0  -0.761269  0.477348  1.170614  0.752714
1   1.217250 -0.930860 -0.769324 -0.408642
2  -0.619679 -1.227659 -0.259135  1.700294
4  -0.529529  0.000571  0.913779  1.395894
6   0.757178  0.240012 -0.553820  1.177202
7  -0.986128 -1.313843  0.788589 -0.707836
9  -0.692013  0.671866  1.179466 -1.180351
11 -0.143273 -0.503199 -1.328728  0.610552
12 -0.923110 -1.365890 -1.366202 -1.185999
13 -2.026832  0.273593 -0.440426 -0.627423
14 -0.054503 -0.788866 -0.228088 -0.404783
15  0.955298 -1.430019  1.434071 -0.088215
16 -0.227946  0.047462  0.373573 -0.111675
17  1.627912  0.043611  1.743403 -0.012714
19  0.104425  0.037412  0.450598 -0.923387

df.loc[:, 'NewCol'] = 0

df
           A         B         C         D  NewCol
0  -0.761269  0.477348  1.170614  0.752714       0
1   1.217250 -0.930860 -0.769324 -0.408642       0
2  -0.619679 -1.227659 -0.259135  1.700294       0
4  -0.529529  0.000571  0.913779  1.395894       0
6   0.757178  0.240012 -0.553820  1.177202       0
7  -0.986128 -1.313843  0.788589 -0.707836       0
9  -0.692013  0.671866  1.179466 -1.180351       0
11 -0.143273 -0.503199 -1.328728  0.610552       0
12 -0.923110 -1.365890 -1.366202 -1.185999       0
13 -2.026832  0.273593 -0.440426 -0.627423       0
14 -0.054503 -0.788866 -0.228088 -0.404783       0
15  0.955298 -1.430019  1.434071 -0.088215       0
16 -0.227946  0.047462  0.373573 -0.111675       0
17  1.627912  0.043611  1.743403 -0.012714       0
19  0.104425  0.037412  0.450598 -0.923387       0

回答 13

让我补充一点,就像hum3一样.loc没有解决SettingWithCopyWarning,我不得不求助于df.insert()。在我的情况下,“假”链索引产生了误报 dict['a']['e'],其中'e'是新列,并且dict['a']是来自字典的DataFrame。

另请注意,如果您知道自己在做什么,则可以使用pd.options.mode.chained_assignment = None ,而可以使用此处提供的其他解决方案之一来切换警告 。

Let me just add that, just like for hum3, .loc didn’t solve the SettingWithCopyWarning and I had to resort to df.insert(). In my case false positive was generated by “fake” chain indexing dict['a']['e'], where 'e' is the new column, and dict['a'] is a DataFrame coming from dictionary.

Also note that if you know what you are doing, you can switch of the warning using pd.options.mode.chained_assignment = None and than use one of the other solutions given here.


回答 14

要在数据框中的给定位置(0 <= loc <=列数)插入新列,只需使用Dataframe.insert:

DataFrame.insert(loc, column, value)

因此,如果要将列e添加到名为df的数据帧的末尾,则可以使用:

e = [-0.335485, -1.166658, -0.385571]    
DataFrame.insert(loc=len(df.columns), column='e', value=e)

value可以是Series,整数(在这种情况下,所有单元格都填充有该值)或类似数组的结构

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html

to insert a new column at a given location (0 <= loc <= amount of columns) in a data frame, just use Dataframe.insert:

DataFrame.insert(loc, column, value)

Therefore, if you want to add the column e at the end of a data frame called df, you can use:

e = [-0.335485, -1.166658, -0.385571]    
DataFrame.insert(loc=len(df.columns), column='e', value=e)

value can be a Series, an integer (in which case all cells get filled with this one value), or an array-like structure

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html


回答 15

在分配新列之前,如果您已建立索引数据,则需要对索引进行排序。至少就我而言,我必须:

data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"        
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])

Before assigning a new column, if you have indexed data, you need to sort the index. At least in my case I had to:

data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"        
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])

回答 16

但是要注意的一件事是,如果您这样做

df1['e'] = Series(np.random.randn(sLength), index=df1.index)

这实际上是df1.index上的连接。因此,如果要产生外部联接效果,我可能不完善的解决方案是创建一个具有索引值的数据框,该索引值覆盖数据的整个范围,然后使用上面的代码。例如,

data = pd.DataFrame(index=all_possible_values)
df1['e'] = Series(np.random.randn(sLength), index=df1.index)

One thing to note, though, is that if you do

df1['e'] = Series(np.random.randn(sLength), index=df1.index)

this will effectively be a left join on the df1.index. So if you want to have an outer join effect, my probably imperfect solution is to create a dataframe with index values covering the universe of your data, and then use the code above. For example,

data = pd.DataFrame(index=all_possible_values)
df1['e'] = Series(np.random.randn(sLength), index=df1.index)

回答 17

我一直在寻找一种通用方法,将numpy.nans 的列添加到数据框而不会变得愚蠢SettingWithCopyWarning

从以下内容:

我想出了这个:

col = 'column_name'
df = df.assign(**{col:numpy.full(len(df), numpy.nan)})

I was looking for a general way of adding a column of numpy.nans to a dataframe without getting the dumb SettingWithCopyWarning.

From the following:

  • the answers here
  • this question about passing a variable as a keyword argument
  • this method for generating a numpy array of NaNs in-line

I came up with this:

col = 'column_name'
df = df.assign(**{col:numpy.full(len(df), numpy.nan)})

回答 18

要将新列“ e”添加到现有数据框中

 df1.loc[:,'e'] = Series(np.random.randn(sLength))

To add a new column, ‘e’, to the existing data frame

 df1.loc[:,'e'] = Series(np.random.randn(sLength))

回答 19

为了完整性-使用DataFrame.eval()方法的另一种解决方案:

数据:

In [44]: e
Out[44]:
0    1.225506
1   -1.033944
2   -0.498953
3   -0.373332
4    0.615030
5   -0.622436
dtype: float64

In [45]: df1
Out[45]:
          a         b         c         d
0 -0.634222 -0.103264  0.745069  0.801288
4  0.782387 -0.090279  0.757662 -0.602408
5 -0.117456  2.124496  1.057301  0.765466
7  0.767532  0.104304 -0.586850  1.051297
8 -0.103272  0.958334  1.163092  1.182315
9 -0.616254  0.296678 -0.112027  0.679112

解:

In [46]: df1.eval("e = @e.values", inplace=True)

In [47]: df1
Out[47]:
          a         b         c         d         e
0 -0.634222 -0.103264  0.745069  0.801288  1.225506
4  0.782387 -0.090279  0.757662 -0.602408 -1.033944
5 -0.117456  2.124496  1.057301  0.765466 -0.498953
7  0.767532  0.104304 -0.586850  1.051297 -0.373332
8 -0.103272  0.958334  1.163092  1.182315  0.615030
9 -0.616254  0.296678 -0.112027  0.679112 -0.622436

For the sake of completeness – yet another solution using DataFrame.eval() method:

Data:

In [44]: e
Out[44]:
0    1.225506
1   -1.033944
2   -0.498953
3   -0.373332
4    0.615030
5   -0.622436
dtype: float64

In [45]: df1
Out[45]:
          a         b         c         d
0 -0.634222 -0.103264  0.745069  0.801288
4  0.782387 -0.090279  0.757662 -0.602408
5 -0.117456  2.124496  1.057301  0.765466
7  0.767532  0.104304 -0.586850  1.051297
8 -0.103272  0.958334  1.163092  1.182315
9 -0.616254  0.296678 -0.112027  0.679112

Solution:

In [46]: df1.eval("e = @e.values", inplace=True)

In [47]: df1
Out[47]:
          a         b         c         d         e
0 -0.634222 -0.103264  0.745069  0.801288  1.225506
4  0.782387 -0.090279  0.757662 -0.602408 -1.033944
5 -0.117456  2.124496  1.057301  0.765466 -0.498953
7  0.767532  0.104304 -0.586850  1.051297 -0.373332
8 -0.103272  0.958334  1.163092  1.182315  0.615030
9 -0.616254  0.296678 -0.112027  0.679112 -0.622436

回答 20

创建一个空列

df['i'] = None

To create an empty column

df['i'] = None

回答 21

以下是我的工作…但是,我对熊猫和Python真的很陌生,所以没有什么承诺。

df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))

newCol = [3,5,7]
newName = 'C'

values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)

df = pd.DataFrame(values,columns=header)

The following is what I did… But I’m pretty new to pandas and really Python in general, so no promises.

df = pd.DataFrame([[1, 2], [3, 4], [5,6]], columns=list('AB'))

newCol = [3,5,7]
newName = 'C'

values = np.insert(df.values,df.shape[1],newCol,axis=1)
header = df.columns.values.tolist()
header.append(newName)

df = pd.DataFrame(values,columns=header)

回答 22

如果得到SettingWithCopyWarning,一个简单的解决方法是复制您要向其中添加列的DataFrame。

df = df.copy()
df['col_name'] = values

If you get the SettingWithCopyWarning, an easy fix is to copy the DataFrame you are trying to add a column to.

df = df.copy()
df['col_name'] = values

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。