问题:如何使用点“。” 访问字典成员?

如何通过点“。”访问Python词典成员?

例如,mydict['val']我不想写,而是想写mydict.val

我也想以这种方式访问​​嵌套的字典。例如

mydict.mydict2.val 

将指

mydict = { 'mydict2': { 'val': ... } }

How do I make Python dictionary members accessible via a dot “.”?

For example, instead of writing mydict['val'], I’d like to write mydict.val.

Also I’d like to access nested dicts this way. For example

mydict.mydict2.val 

would refer to

mydict = { 'mydict2': { 'val': ... } }

回答 0

您可以使用我刚刚制作的此类进行操作。通过此类,您可以Map像其他字典(包括json序列化)一样使用该对象,也可以使用点符号。希望对您有所帮助:

class Map(dict):
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
    """
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self[k] = v

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

用法示例:

m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
# Or
m['new_key'] = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']

You can do it using this class I just made. With this class you can use the Map object like another dictionary(including json serialization) or with the dot notation. I hope to help you:

class Map(dict):
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
    """
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self[k] = v

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

Usage examples:

m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
# Or
m['new_key'] = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']

回答 1

我一直将其保存在util文件中。您也可以在自己的类中将其用作混合。

class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

mydict = {'val':'it works'}
nested_dict = {'val':'nested works too'}
mydict = dotdict(mydict)
mydict.val
# 'it works'

mydict.nested = dotdict(nested_dict)
mydict.nested.val
# 'nested works too'

I’ve always kept this around in a util file. You can use it as a mixin on your own classes too.

class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

mydict = {'val':'it works'}
nested_dict = {'val':'nested works too'}
mydict = dotdict(mydict)
mydict.val
# 'it works'

mydict.nested = dotdict(nested_dict)
mydict.nested.val
# 'nested works too'

回答 2

dotmap通过安装pip

pip install dotmap

它可以完成您想要做的所有事情并成为其子类dict,因此它的作用类似于普通字典:

from dotmap import DotMap

m = DotMap()
m.hello = 'world'
m.hello
m.hello += '!'
# m.hello and m['hello'] now both return 'world!'
m.val = 5
m.val2 = 'Sam'

最重要的是,您可以将其与dict对象之间进行转换:

d = m.toDict()
m = DotMap(d) # automatic conversion in constructor

这意味着,如果您要访问的内容已经dict存在,可以将其转换DotMap为易于访问的内容:

import json
jsonDict = json.loads(text)
data = DotMap(jsonDict)
print data.location.city

最后,它会自动创建新的子DotMap实例,因此您可以执行以下操作:

m = DotMap()
m.people.steve.age = 31

与束比较

全面披露:我是DotMap的创建者。我创建它是因为Bunch缺少这些功能

  • 记住添加了订单项并按照该顺序进行迭代
  • 自动子 DotMap创建,这样可以节省时间,并在您具有多个层次结构时使代码更简洁
  • 从构造dict并将所有子dict实例递归转换为DotMap

Install dotmap via pip

pip install dotmap

It does everything you want it to do and subclasses dict, so it operates like a normal dictionary:

from dotmap import DotMap

m = DotMap()
m.hello = 'world'
m.hello
m.hello += '!'
# m.hello and m['hello'] now both return 'world!'
m.val = 5
m.val2 = 'Sam'

On top of that, you can convert it to and from dict objects:

d = m.toDict()
m = DotMap(d) # automatic conversion in constructor

This means that if something you want to access is already in dict form, you can turn it into a DotMap for easy access:

import json
jsonDict = json.loads(text)
data = DotMap(jsonDict)
print data.location.city

Finally, it automatically creates new child DotMap instances so you can do things like this:

m = DotMap()
m.people.steve.age = 31

Comparison to Bunch

Full disclosure: I am the creator of the DotMap. I created it because Bunch was missing these features

  • remembering the order items are added and iterating in that order
  • automatic child DotMap creation, which saves time and makes for cleaner code when you have a lot of hierarchy
  • constructing from a dict and recursively converting all child dict instances to DotMap

回答 3

从指令派生并实施__getattr__和实施__setattr__

或者您可以使用非常相似的Bunch

我认为不可能对内置的dict类进行修补。

Derive from dict and and implement __getattr__ and __setattr__.

Or you can use Bunch which is very similar.

I don’t think it’s possible to monkeypatch built-in dict class.


回答 4

Fabric具有非常好的,最小的实现。扩展它以允许嵌套访问,我们可以使用defaultdict,结果看起来像这样:

from collections import defaultdict

class AttributeDict(defaultdict):
    def __init__(self):
        super(AttributeDict, self).__init__(AttributeDict)

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(key)

    def __setattr__(self, key, value):
        self[key] = value

如下使用它:

keys = AttributeDict()
keys.abc.xyz.x = 123
keys.abc.xyz.a.b.c = 234

这就详细说明了库格尔的回答:“从命令和实现中得出__getattr____setattr__”。现在您知道了!

Fabric has a really nice, minimal implementation. Extending that to allow for nested access, we can use a defaultdict, and the result looks something like this:

from collections import defaultdict

class AttributeDict(defaultdict):
    def __init__(self):
        super(AttributeDict, self).__init__(AttributeDict)

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(key)

    def __setattr__(self, key, value):
        self[key] = value

Make use of it as follows:

keys = AttributeDict()
keys.abc.xyz.x = 123
keys.abc.xyz.a.b.c = 234

That elaborates a bit on Kugel’s answer of “Derive from dict and and implement __getattr__ and __setattr__“. Now you know how!


回答 5

我尝试了这个:

class dotdict(dict):
    def __getattr__(self, name):
        return self[name]

你可以试试 __getattribute__

让每个字典都使用点分隔符就足够了,如果您想从多层字典中初始化它,也可以尝试实现__init__

I tried this:

class dotdict(dict):
    def __getattr__(self, name):
        return self[name]

you can try __getattribute__ too.

make every dict a type of dotdict would be good enough, if you want to init this from a multi-layer dict, try implement __init__ too.


回答 6

别。属性访问和索引编制在Python中是分开的,您不希望它们执行相同的操作。namedtuple如果您有一些应该具有可访问属性的东西,并使用[]表示法从字典中获取一项,则创建一个类(可能是由制成的类)。

Don’t. Attribute access and indexing are separate things in Python, and you shouldn’t want them to perform the same. Make a class (possibly one made by namedtuple) if you have something that should have accessible attributes and use [] notation to get an item from a dict.


回答 7

如果要腌制修改后的字典,则需要在上述答案中添加一些状态方法:

class DotDict(dict):
    """dot.notation access to dictionary attributes"""
    def __getattr__(self, attr):
        return self.get(attr)
    __setattr__= dict.__setitem__
    __delattr__= dict.__delitem__

    def __getstate__(self):
        return self

    def __setstate__(self, state):
        self.update(state)
        self.__dict__ = self

If you want to pickle your modified dictionary, you need to add few state methods to above answers:

class DotDict(dict):
    """dot.notation access to dictionary attributes"""
    def __getattr__(self, attr):
        return self.get(attr)
    __setattr__= dict.__setitem__
    __delattr__= dict.__delitem__

    def __getstate__(self):
        return self

    def __setstate__(self, state):
        self.update(state)
        self.__dict__ = self

回答 8

以库格尔(Kugel)的答案为基础,并考虑迈克·格雷厄姆(Mike Graham)的警告语,如果我们做包装纸怎么办?

class DictWrap(object):
  """ Wrap an existing dict, or create a new one, and access with either dot 
    notation or key lookup.

    The attribute _data is reserved and stores the underlying dictionary.
    When using the += operator with create=True, the empty nested dict is 
    replaced with the operand, effectively creating a default dictionary
    of mixed types.

    args:
      d({}): Existing dict to wrap, an empty dict is created by default
      create(True): Create an empty, nested dict instead of raising a KeyError

    example:
      >>>dw = DictWrap({'pp':3})
      >>>dw.a.b += 2
      >>>dw.a.b += 2
      >>>dw.a['c'] += 'Hello'
      >>>dw.a['c'] += ' World'
      >>>dw.a.d
      >>>print dw._data
      {'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}

  """

  def __init__(self, d=None, create=True):
    if d is None:
      d = {}
    supr = super(DictWrap, self)  
    supr.__setattr__('_data', d)
    supr.__setattr__('__create', create)

  def __getattr__(self, name):
    try:
      value = self._data[name]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[name] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setattr__(self, name, value):
    self._data[name] = value  

  def __getitem__(self, key):
    try:
      value = self._data[key]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[key] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setitem__(self, key, value):
    self._data[key] = value

  def __iadd__(self, other):
    if self._data:
      raise TypeError("A Nested dict will only be replaced if it's empty")
    else:
      return other

Building on Kugel’s answer and taking Mike Graham’s words of caution into consideration, what if we make a wrapper?

class DictWrap(object):
  """ Wrap an existing dict, or create a new one, and access with either dot 
    notation or key lookup.

    The attribute _data is reserved and stores the underlying dictionary.
    When using the += operator with create=True, the empty nested dict is 
    replaced with the operand, effectively creating a default dictionary
    of mixed types.

    args:
      d({}): Existing dict to wrap, an empty dict is created by default
      create(True): Create an empty, nested dict instead of raising a KeyError

    example:
      >>>dw = DictWrap({'pp':3})
      >>>dw.a.b += 2
      >>>dw.a.b += 2
      >>>dw.a['c'] += 'Hello'
      >>>dw.a['c'] += ' World'
      >>>dw.a.d
      >>>print dw._data
      {'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}

  """

  def __init__(self, d=None, create=True):
    if d is None:
      d = {}
    supr = super(DictWrap, self)  
    supr.__setattr__('_data', d)
    supr.__setattr__('__create', create)

  def __getattr__(self, name):
    try:
      value = self._data[name]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[name] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setattr__(self, name, value):
    self._data[name] = value  

  def __getitem__(self, key):
    try:
      value = self._data[key]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[key] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setitem__(self, key, value):
    self._data[key] = value

  def __iadd__(self, other):
    if self._data:
      raise TypeError("A Nested dict will only be replaced if it's empty")
    else:
      return other

回答 9

用途SimpleNamespace

>>> from types import SimpleNamespace   
>>> d = dict(x=[1, 2], y=['a', 'b'])
>>> ns = SimpleNamespace(**d)
>>> ns.x
[1, 2]
>>> ns
namespace(x=[1, 2], y=['a', 'b'])

Use SimpleNamespace:

>>> from types import SimpleNamespace   
>>> d = dict(x=[1, 2], y=['a', 'b'])
>>> ns = SimpleNamespace(**d)
>>> ns.x
[1, 2]
>>> ns
namespace(x=[1, 2], y=['a', 'b'])

回答 10

我喜欢Munch,它在点访问之外还提供了许多方便的选项。

进口午餐

temp_1 = {‘person’:{‘fname’:’senthil’,’lname’:’ramalingam’}}

dict_munch = munch.munchify(temp_1)

dict_munch.person.fname

I like the Munch and it gives lot of handy options on top of dot access.

import munch

temp_1 = {‘person’: { ‘fname’: ‘senthil’, ‘lname’: ‘ramalingam’}}

dict_munch = munch.munchify(temp_1)

dict_munch.person.fname


回答 11

最近,我遇到了“ Box ”库,它做同样的事情。

安装命令: pip install python-box

例:

from box import Box

mydict = {"key1":{"v1":0.375,
                    "v2":0.625},
          "key2":0.125,
          }
mydict = Box(mydict)

print(mydict.key1.v1)

我发现它比其他现有的库(例如dotmap)更有效,如点阵图,当嵌套的字典较大时,它们会生成python递归错误。

链接到库和详细信息:https : //pypi.org/project/python-box/

I recently came across the ‘Box‘ library which does the same thing.

Installation command : pip install python-box

Example:

from box import Box

mydict = {"key1":{"v1":0.375,
                    "v2":0.625},
          "key2":0.125,
          }
mydict = Box(mydict)

print(mydict.key1.v1)

I found it to be more effective than other existing libraries like dotmap, which generate python recursion error when you have large nested dicts.

link to library and details: https://pypi.org/project/python-box/


回答 12

使用__getattr__非常简单,可在Python 3.4.3中使用

class myDict(dict):
    def __getattr__(self,val):
        return self[val]


blockBody=myDict()
blockBody['item1']=10000
blockBody['item2']="StackOverflow"
print(blockBody.item1)
print(blockBody.item2)

输出:

10000
StackOverflow

Use __getattr__, very simple, works in Python 3.4.3

class myDict(dict):
    def __getattr__(self,val):
        return self[val]


blockBody=myDict()
blockBody['item1']=10000
blockBody['item2']="StackOverflow"
print(blockBody.item1)
print(blockBody.item2)

Output:

10000
StackOverflow

回答 13

语言本身不支持此功能,但有时这仍然是有用的要求。除了Bunch食谱之外,您还可以编写一些小方法,该方法可以使用点分字符串来访问字典:

def get_var(input_dict, accessor_string):
    """Gets data from a dictionary using a dotted accessor-string"""
    current_data = input_dict
    for chunk in accessor_string.split('.'):
        current_data = current_data.get(chunk, {})
    return current_data

这将支持以下内容:

>> test_dict = {'thing': {'spam': 12, 'foo': {'cheeze': 'bar'}}}
>> output = get_var(test_dict, 'thing.spam.foo.cheeze')
>> print output
'bar'
>>

The language itself doesn’t support this, but sometimes this is still a useful requirement. Besides the Bunch recipe, you can also write a little method which can access a dictionary using a dotted string:

def get_var(input_dict, accessor_string):
    """Gets data from a dictionary using a dotted accessor-string"""
    current_data = input_dict
    for chunk in accessor_string.split('.'):
        current_data = current_data.get(chunk, {})
    return current_data

which would support something like this:

>> test_dict = {'thing': {'spam': 12, 'foo': {'cheeze': 'bar'}}}
>> output = get_var(test_dict, 'thing.spam.foo.cheeze')
>> print output
'bar'
>>

回答 14

为了建立epool的答案,此版本允许您通过点运算符访问内部的所有dict:

foo = {
    "bar" : {
        "baz" : [ {"boo" : "hoo"} , {"baba" : "loo"} ]
    }
}

例如,foo.bar.baz[1].babareturn "loo"

class Map(dict):
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    if isinstance(v, dict):
                        v = Map(v)
                    if isinstance(v, list):
                        self.__convert(v)
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                if isinstance(v, dict):
                    v = Map(v)
                elif isinstance(v, list):
                    self.__convert(v)
                self[k] = v

    def __convert(self, v):
        for elem in xrange(0, len(v)):
            if isinstance(v[elem], dict):
                v[elem] = Map(v[elem])
            elif isinstance(v[elem], list):
                self.__convert(v[elem])

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

To build upon epool’s answer, this version allows you to access any dict inside via the dot operator:

foo = {
    "bar" : {
        "baz" : [ {"boo" : "hoo"} , {"baba" : "loo"} ]
    }
}

For instance, foo.bar.baz[1].baba returns "loo".

class Map(dict):
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    if isinstance(v, dict):
                        v = Map(v)
                    if isinstance(v, list):
                        self.__convert(v)
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                if isinstance(v, dict):
                    v = Map(v)
                elif isinstance(v, list):
                    self.__convert(v)
                self[k] = v

    def __convert(self, v):
        for elem in xrange(0, len(v)):
            if isinstance(v[elem], dict):
                v[elem] = Map(v[elem])
            elif isinstance(v[elem], list):
                self.__convert(v[elem])

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

回答 15

def dict_to_object(dick):
    # http://stackoverflow.com/a/1305663/968442

    class Struct:
        def __init__(self, **entries):
            self.__dict__.update(entries)

    return Struct(**dick)

如果决定永久将其转换dict为对象,则应该这样做。您可以在访问之前创建一个一次性对象。

d = dict_to_object(d)
def dict_to_object(dick):
    # http://stackoverflow.com/a/1305663/968442

    class Struct:
        def __init__(self, **entries):
            self.__dict__.update(entries)

    return Struct(**dick)

If one decides to permanently convert that dict to object this should do. You can create a throwaway object just before accessing.

d = dict_to_object(d)

回答 16

我最终都尝试了AttrDict Bunch库,发现它们是我使用速度减慢的方法。经过一个朋友和我的研究,我们发现编写这些库的主要方法导致该库通过嵌套对象积极地递归并在整个字典对象中进行复制。考虑到这一点,我们进行了两个关键更改。1)我们使属性延迟加载; 2)我们创建轻量级代理对象的副本,而不是创建字典对象的副本。这是最终的实现。使用此代码的性能提升令人难以置信。使用AttrDict或Bunch时,仅这两个库分别消耗了我的请求时间的1/2和1/3(什么!?)。这段代码将时间减少到几乎没有(在0.5ms范围内)。当然,这取决于您的需求,但是如果您在代码中大量使用此功能,

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

通过https://stackoverflow.com/users/704327/michael-merickel查看此处的原始实现。

还要注意的另一件事是,此实现非常简单,并没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上编写这些内容。

I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way to slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

See the original implementation here by https://stackoverflow.com/users/704327/michael-merickel.

The other thing to note, is that this implementation is pretty simple and doesn’t implement all of the methods you might need. You’ll need to write those as required on the DictProxy or ListProxy objects.


回答 17

我想将自己的解决方案付诸实践:

https://github.com/skorokithakis/jsane

它使您可以将JSON解析为可以访问的内容with.attribute.lookups.like.this.r(),主要是因为在开始使用JSON 之前我还没有看到这个答案。

I’d like to throw my own solution into the ring:

https://github.com/skorokithakis/jsane

It allows you to parse JSON into something you can access with.attribute.lookups.like.this.r(), mostly because I hadn’t seen this answer before starting to work on it.


回答 18

不是直接回答OP的问题,而是受到某些人的启发,也许对某些人有用。.我已经使用内部__dict__方法创建了基于对象的解决方案(绝不优化代码)

payload = {
    "name": "John",
    "location": {
        "lat": 53.12312312,
        "long": 43.21345112
    },
    "numbers": [
        {
            "role": "home",
            "number": "070-12345678"
        },
        {
            "role": "office",
            "number": "070-12345679"
        }
    ]
}


class Map(object):
    """
    Dot style access to object members, access raw values
    with an underscore e.g.

    class Foo(Map):
        def foo(self):
            return self.get('foo') + 'bar'

    obj = Foo(**{'foo': 'foo'})

    obj.foo => 'foobar'
    obj._foo => 'foo'

    """

    def __init__(self, *args, **kwargs):
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self.__dict__[k] = v
                    self.__dict__['_' + k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self.__dict__[k] = v
                self.__dict__['_' + k] = v

    def __getattribute__(self, attr):
        if hasattr(self, 'get_' + attr):
            return object.__getattribute__(self, 'get_' + attr)()
        else:
            return object.__getattribute__(self, attr)

    def get(self, key):
        try:
            return self.__dict__.get('get_' + key)()
        except (AttributeError, TypeError):
            return self.__dict__.get(key)

    def __repr__(self):
        return u"<{name} object>".format(
            name=self.__class__.__name__
        )


class Number(Map):
    def get_role(self):
        return self.get('role')

    def get_number(self):
        return self.get('number')


class Location(Map):
    def get_latitude(self):
        return self.get('lat') + 1

    def get_longitude(self):
        return self.get('long') + 1


class Item(Map):
    def get_name(self):
        return self.get('name') + " Doe"

    def get_location(self):
        return Location(**self.get('location'))

    def get_numbers(self):
        return [Number(**n) for n in self.get('numbers')]


# Tests

obj = Item({'foo': 'bar'}, **payload)

assert type(obj) == Item
assert obj._name == "John"
assert obj.name == "John Doe"
assert type(obj.location) == Location
assert obj.location._lat == 53.12312312
assert obj.location._long == 43.21345112
assert obj.location.latitude == 54.12312312
assert obj.location.longitude == 44.21345112

for n in obj.numbers:
    assert type(n) == Number
    if n.role == 'home':
        assert n.number == "070-12345678"
    if n.role == 'office':
        assert n.number == "070-12345679"

Not a direct answer to the OP’s question, but inspired by and perhaps useful for some.. I’ve created an object-based solution using the internal __dict__ (In no way optimized code)

payload = {
    "name": "John",
    "location": {
        "lat": 53.12312312,
        "long": 43.21345112
    },
    "numbers": [
        {
            "role": "home",
            "number": "070-12345678"
        },
        {
            "role": "office",
            "number": "070-12345679"
        }
    ]
}


class Map(object):
    """
    Dot style access to object members, access raw values
    with an underscore e.g.

    class Foo(Map):
        def foo(self):
            return self.get('foo') + 'bar'

    obj = Foo(**{'foo': 'foo'})

    obj.foo => 'foobar'
    obj._foo => 'foo'

    """

    def __init__(self, *args, **kwargs):
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self.__dict__[k] = v
                    self.__dict__['_' + k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self.__dict__[k] = v
                self.__dict__['_' + k] = v

    def __getattribute__(self, attr):
        if hasattr(self, 'get_' + attr):
            return object.__getattribute__(self, 'get_' + attr)()
        else:
            return object.__getattribute__(self, attr)

    def get(self, key):
        try:
            return self.__dict__.get('get_' + key)()
        except (AttributeError, TypeError):
            return self.__dict__.get(key)

    def __repr__(self):
        return u"<{name} object>".format(
            name=self.__class__.__name__
        )


class Number(Map):
    def get_role(self):
        return self.get('role')

    def get_number(self):
        return self.get('number')


class Location(Map):
    def get_latitude(self):
        return self.get('lat') + 1

    def get_longitude(self):
        return self.get('long') + 1


class Item(Map):
    def get_name(self):
        return self.get('name') + " Doe"

    def get_location(self):
        return Location(**self.get('location'))

    def get_numbers(self):
        return [Number(**n) for n in self.get('numbers')]


# Tests

obj = Item({'foo': 'bar'}, **payload)

assert type(obj) == Item
assert obj._name == "John"
assert obj.name == "John Doe"
assert type(obj.location) == Location
assert obj.location._lat == 53.12312312
assert obj.location._long == 43.21345112
assert obj.location.latitude == 54.12312312
assert obj.location.longitude == 44.21345112

for n in obj.numbers:
    assert type(n) == Number
    if n.role == 'home':
        assert n.number == "070-12345678"
    if n.role == 'office':
        assert n.number == "070-12345679"

回答 19

获得点访问(而不是数组访问)的一种简单方法是在Python中使用普通对象。像这样:

class YourObject:
    def __init__(self, *args, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)

…并像这样使用它:

>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"

…将其转换为字典:

>>> print(obj.__dict__)
{"key": "value"}

One simple way to get dot access (but not array access), is to use a plain object in Python. Like this:

class YourObject:
    def __init__(self, *args, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)

…and use it like this:

>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"

… to convert it to a dict:

>>> print(obj.__dict__)
{"key": "value"}

回答 20

此解决方案是对epool提供的解决方案的改进,以解决OP以一致方式访问嵌套dict的要求。epool的解决方案不允许访问嵌套字典。

class YAMLobj(dict):
    def __init__(self, args):
        super(YAMLobj, self).__init__(args)
        if isinstance(args, dict):
            for k, v in args.iteritems():
                if not isinstance(v, dict):
                    self[k] = v
                else:
                    self.__setattr__(k, YAMLobj(v))


    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(YAMLobj, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(YAMLobj, self).__delitem__(key)
        del self.__dict__[key]

有了这一堂课,您现在可以执行以下操作:A.B.C.D

This solution is a refinement upon the one offered by epool to address the requirement of the OP to access nested dicts in a consistent manner. The solution by epool did not allow for accessing nested dicts.

class YAMLobj(dict):
    def __init__(self, args):
        super(YAMLobj, self).__init__(args)
        if isinstance(args, dict):
            for k, v in args.iteritems():
                if not isinstance(v, dict):
                    self[k] = v
                else:
                    self.__setattr__(k, YAMLobj(v))


    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(YAMLobj, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(YAMLobj, self).__delitem__(key)
        del self.__dict__[key]

With this class, one can now do something like: A.B.C.D.


回答 21

这也适用于嵌套字典,并确保稍后附加的字典具有相同的行为:

class DotDict(dict):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Recursively turn nested dicts into DotDicts
        for key, value in self.items():
            if type(value) is dict:
                self[key] = DotDict(value)

    def __setitem__(self, key, item):
        if type(item) is dict:
            item = DotDict(item)
        super().__setitem__(key, item)

    __setattr__ = __setitem__
    __getattr__ = dict.__getitem__

This also works with nested dicts and makes sure that dicts which are appended later behave the same:

class DotDict(dict):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Recursively turn nested dicts into DotDicts
        for key, value in self.items():
            if type(value) is dict:
                self[key] = DotDict(value)

    def __setitem__(self, key, item):
        if type(item) is dict:
            item = DotDict(item)
        super().__setitem__(key, item)

    __setattr__ = __setitem__
    __getattr__ = dict.__getitem__

回答 22

@ derek73的答案非常简洁,但是不能被腌制或(深度)复制,并且返回None因缺少键。下面的代码解决了这个问题。

编辑:我没有看到上面的答案完全相同的点(已投票)。我将答案留在这里以供参考。

class dotdict(dict):
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

The answer of @derek73 is very neat, but it cannot be pickled nor (deep)copied, and it returns None for missing keys. The code below fixes this.

Edit: I did not see the answer above that addresses the exact same point (upvoted). I’m leaving the answer here for reference.

class dotdict(dict):
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

回答 23

一种精致的解决方案

class DotDict(dict):

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __getattr__(self, key):

        def typer(candidate):
            if isinstance(candidate, dict):
                return DotDict(candidate)

            if isinstance(candidate, str):  # iterable but no need to iter
                return candidate

            try:  # other iterable are processed as list
                return [typer(item) for item in candidate]
            except TypeError:
                return candidate

            return candidate

        return typer(dict.get(self, key))

A solution kind of delicate

class DotDict(dict):

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

    def __getattr__(self, key):

        def typer(candidate):
            if isinstance(candidate, dict):
                return DotDict(candidate)

            if isinstance(candidate, str):  # iterable but no need to iter
                return candidate

            try:  # other iterable are processed as list
                return [typer(item) for item in candidate]
            except TypeError:
                return candidate

            return candidate

        return typer(dict.get(self, key))

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。