问题:如何使用python中的pandas获取所有重复项的列表?
我列出了可能存在一些出口问题的物品清单。我想获得重复项的列表,以便可以手动比较它们。当我尝试使用pandas 重复方法时,它仅返回第一个重复。有没有办法获取所有重复项,而不仅仅是第一个?
我的数据集的一个小部分看起来像这样:
ID,ENROLLMENT_DATE,TRAINER_MANAGING,TRAINER_OPERATOR,FIRST_VISIT_DATE
1536D,12-Feb-12,"06DA1B3-Lebanon NH",,15-Feb-12
F15D,18-May-12,"06405B2-Lebanon NH",,25-Jul-12
8096,8-Aug-12,"0643D38-Hanover NH","0643D38-Hanover NH",25-Jun-12
A036,1-Apr-12,"06CB8CF-Hanover NH","06CB8CF-Hanover NH",9-Aug-12
8944,19-Feb-12,"06D26AD-Hanover NH",,4-Feb-12
1004E,8-Jun-12,"06388B2-Lebanon NH",,24-Dec-11
11795,3-Jul-12,"0649597-White River VT","0649597-White River VT",30-Mar-12
30D7,11-Nov-12,"06D95A3-Hanover NH","06D95A3-Hanover NH",30-Nov-11
3AE2,21-Feb-12,"06405B2-Lebanon NH",,26-Oct-12
B0FE,17-Feb-12,"06D1B9D-Hartland VT",,16-Feb-12
127A1,11-Dec-11,"064456E-Hanover NH","064456E-Hanover NH",11-Nov-12
161FF,20-Feb-12,"0643D38-Hanover NH","0643D38-Hanover NH",3-Jul-12
A036,30-Nov-11,"063B208-Randolph VT","063B208-Randolph VT",
475B,25-Sep-12,"06D26AD-Hanover NH",,5-Nov-12
151A3,7-Mar-12,"06388B2-Lebanon NH",,16-Nov-12
CA62,3-Jan-12,,,
D31B,18-Dec-11,"06405B2-Lebanon NH",,9-Jan-12
20F5,8-Jul-12,"0669C50-Randolph VT",,3-Feb-12
8096,19-Dec-11,"0649597-White River VT","0649597-White River VT",9-Apr-12
14E48,1-Aug-12,"06D3206-Hanover NH",,
177F8,20-Aug-12,"063B208-Randolph VT","063B208-Randolph VT",5-May-12
553E,11-Oct-12,"06D95A3-Hanover NH","06D95A3-Hanover NH",8-Mar-12
12D5F,18-Jul-12,"0649597-White River VT","0649597-White River VT",2-Nov-12
C6DC,13-Apr-12,"06388B2-Lebanon NH",,
11795,27-Feb-12,"0643D38-Hanover NH","0643D38-Hanover NH",19-Jun-12
17B43,11-Aug-12,,,22-Oct-12
A036,11-Aug-12,"06D3206-Hanover NH",,19-Jun-12
我的代码当前如下所示:
df_bigdata_duplicates = df_bigdata[df_bigdata.duplicated(cols='ID')]
那里有几个重复的物品。但是,当我使用上面的代码时,我只会得到第一项。在API参考中,我看到了如何获得最后一个项目,但是我希望拥有所有这些项目,因此我可以目视检查它们,以查看为什么我得到了差异。因此,在此示例中,我想获得所有三个A036条目以及11795条目和任何其他重复的条目,而不是仅第一个。任何帮助深表感谢。
回答 0
方法1:打印所有ID为重复ID之一的行:
>>> import pandas as pd
>>> df = pd.read_csv("dup.csv")
>>> ids = df["ID"]
>>> df[ids.isin(ids[ids.duplicated()])].sort("ID")
ID ENROLLMENT_DATE TRAINER_MANAGING TRAINER_OPERATOR FIRST_VISIT_DATE
24 11795 27-Feb-12 0643D38-Hanover NH 0643D38-Hanover NH 19-Jun-12
6 11795 3-Jul-12 0649597-White River VT 0649597-White River VT 30-Mar-12
18 8096 19-Dec-11 0649597-White River VT 0649597-White River VT 9-Apr-12
2 8096 8-Aug-12 0643D38-Hanover NH 0643D38-Hanover NH 25-Jun-12
12 A036 30-Nov-11 063B208-Randolph VT 063B208-Randolph VT NaN
3 A036 1-Apr-12 06CB8CF-Hanover NH 06CB8CF-Hanover NH 9-Aug-12
26 A036 11-Aug-12 06D3206-Hanover NH NaN 19-Jun-12
但是我想不出一种防止重复ids
很多次的好方法。我更喜欢groupby
ID上的方法2 :。
>>> pd.concat(g for _, g in df.groupby("ID") if len(g) > 1)
ID ENROLLMENT_DATE TRAINER_MANAGING TRAINER_OPERATOR FIRST_VISIT_DATE
6 11795 3-Jul-12 0649597-White River VT 0649597-White River VT 30-Mar-12
24 11795 27-Feb-12 0643D38-Hanover NH 0643D38-Hanover NH 19-Jun-12
2 8096 8-Aug-12 0643D38-Hanover NH 0643D38-Hanover NH 25-Jun-12
18 8096 19-Dec-11 0649597-White River VT 0649597-White River VT 9-Apr-12
3 A036 1-Apr-12 06CB8CF-Hanover NH 06CB8CF-Hanover NH 9-Aug-12
12 A036 30-Nov-11 063B208-Randolph VT 063B208-Randolph VT NaN
26 A036 11-Aug-12 06D3206-Hanover NH NaN 19-Jun-12
回答 1
在Pandas版本0.17中,您可以在重复函数中设置“ keep = False”,以获取所有重复项。
In [1]: import pandas as pd
In [2]: df = pd.DataFrame(['a','b','c','d','a','b'])
In [3]: df
Out[3]:
0
0 a
1 b
2 c
3 d
4 a
5 b
In [4]: df[df.duplicated(keep=False)]
Out[4]:
0
0 a
1 b
4 a
5 b
回答 2
df[df.duplicated(['ID'], keep=False)]
它将所有重复的行返回给您。
根据文件:
keep:{‘first’,’last’,False},默认为’first’
- first:将第一次出现的重复项标记为True。
- last:将最后一次出现的重复项标记为True。
- False:将所有重复项标记为True。
回答 3
由于我无法发表评论,因此将其发布为单独的答案
要在多个列的基础上查找重复项,请提及以下每个列名,它将返回所有已设置的重复行:
df[df[['product_uid', 'product_title', 'user']].duplicated() == True]
回答 4
df[df['ID'].duplicated() == True]
这对我有用
回答 5
使用按元素进行逻辑运算或将pandas复制方法的take_last参数设置为True和False,您可以从数据框中获取一个包含所有重复项的集合。
df_bigdata_duplicates =
df_bigdata[df_bigdata.duplicated(cols='ID', take_last=False) |
df_bigdata.duplicated(cols='ID', take_last=True)
]
回答 6
这可能不是解决问题的方法,而是举例说明:
import pandas as pd
df = pd.DataFrame({
'A': [1,1,3,4],
'B': [2,2,5,6],
'C': [3,4,7,6],
})
print(df)
df.duplicated(keep=False)
df.duplicated(['A','B'], keep=False)
输出:
A B C
0 1 2 3
1 1 2 4
2 3 5 7
3 4 6 6
0 False
1 False
2 False
3 False
dtype: bool
0 True
1 True
2 False
3 False
dtype: bool
回答 7
sort("ID")
现在似乎无法正常工作,似乎已按照sort doc弃用,因此请sort_values("ID")
改为使用重复过滤器进行排序,如下所示:
df[df.ID.duplicated(keep=False)].sort_values("ID")
回答 8
对于我的数据库,在对列进行排序之前,重复的(keep = False)不起作用。
data.sort_values(by=['Order ID'], inplace=True)
df = data[data['Order ID'].duplicated(keep=False)]
回答 9
df[df.duplicated(['ID'])==True].sort_values('ID')