问题:如何使用Python在OpenCV中裁剪图像
我如何像以前在PIL中一样使用OpenCV裁剪图像。
PIL的工作示例
im = Image.open('0.png').convert('L')
im = im.crop((1, 1, 98, 33))
im.save('_0.png')
但是我如何在OpenCV上做到这一点?
这是我尝试的:
im = cv.imread('0.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, im_bw) = cv.threshold(im, 128, 255, cv.THRESH_OTSU)
im = cv.getRectSubPix(im_bw, (98, 33), (1, 1))
cv.imshow('Img', im)
cv.waitKey(0)
但这是行不通的。
我认为我使用不正确getRectSubPix
。如果是这种情况,请说明如何正确使用此功能。
How can I crop images, like I’ve done before in PIL, using OpenCV.
Working example on PIL
im = Image.open('0.png').convert('L')
im = im.crop((1, 1, 98, 33))
im.save('_0.png')
But how I can do it on OpenCV?
This is what I tried:
im = cv.imread('0.png', cv.CV_LOAD_IMAGE_GRAYSCALE)
(thresh, im_bw) = cv.threshold(im, 128, 255, cv.THRESH_OTSU)
im = cv.getRectSubPix(im_bw, (98, 33), (1, 1))
cv.imshow('Img', im)
cv.waitKey(0)
But it doesn’t work.
I think I incorrectly used getRectSubPix
. If this is the case, please explain how I can correctly use this function.
回答 0
非常简单 使用numpy切片。
import cv2
img = cv2.imread("lenna.png")
crop_img = img[y:y+h, x:x+w]
cv2.imshow("cropped", crop_img)
cv2.waitKey(0)
It’s very simple. Use numpy slicing.
import cv2
img = cv2.imread("lenna.png")
crop_img = img[y:y+h, x:x+w]
cv2.imshow("cropped", crop_img)
cv2.waitKey(0)
回答 1
我有这个问题,在这里找到了另一个答案:复制感兴趣的区域
如果我们将(0,0)视为图像的左上角,im
以从左至右作为x方向,从上至下作为y方向进行调用。并且我们将(x1,y1)作为该图像中矩形区域的左上角顶点和(x2,y2)作为该图像中矩形区域的右下角顶点,然后:
roi = im[y1:y2, x1:x2]
这里是有关numpy数组索引和切片的综合资源,它可以告诉您更多有关裁剪图像一部分的信息。图像将以numpy数组的形式存储在opencv2中。
:)
i had this question and found another answer here: copy region of interest
If we consider (0,0) as top left corner of image called im
with left-to-right as x direction and top-to-bottom as y direction. and we have (x1,y1) as the top-left vertex and (x2,y2) as the bottom-right vertex of a rectangle region within that image, then:
roi = im[y1:y2, x1:x2]
here is a comprehensive resource on numpy array indexing and slicing which can tell you more about things like cropping a part of an image. images would be stored as a numpy array in opencv2.
:)
回答 2
请注意,图像切片不是创建的副本,cropped image
而是创建pointer
的roi
。如果要加载这么多图像,使用切片裁剪图像的相关部分,然后追加到列表中,则可能会浪费大量内存。
假设您每个加载N张图像,>1MP
并且只需要100x100
左上角的区域。
Slicing
:
X = []
for i in range(N):
im = imread('image_i')
X.append(im[0:100,0:100]) # This will keep all N images in the memory.
# Because they are still used.
或者,您可以通过复制相关部分.copy()
,以便垃圾回收器将删除im
。
X = []
for i in range(N):
im = imread('image_i')
X.append(im[0:100,0:100].copy()) # This will keep only the crops in the memory.
# im's will be deleted by gc.
找出在此之后,我意识到一个评论由user1270710提到,但我花了相当长的一段时间去找出(即,调试等)。因此,我认为值得一提。
Note that, image slicing is not creating a copy of the cropped image
but creating a pointer
to the roi
. If you are loading so many images, cropping the relevant parts of the images with slicing, then appending into a list, this might be a huge memory waste.
Suppose you load N images each is >1MP
and you need only 100x100
region from the upper left corner.
Slicing
:
X = []
for i in range(N):
im = imread('image_i')
X.append(im[0:100,0:100]) # This will keep all N images in the memory.
# Because they are still used.
Alternatively, you can copy the relevant part by .copy()
, so garbage collector will remove im
.
X = []
for i in range(N):
im = imread('image_i')
X.append(im[0:100,0:100].copy()) # This will keep only the crops in the memory.
# im's will be deleted by gc.
After finding out this, I realized one of the comments by user1270710 mentioned that but it took me quite some time to find out (i.e., debugging etc). So, I think it worths mentioning.
回答 3
此代码将图像从x = 0,y = 0位置裁剪为h = 100,w = 200
import numpy as np
import cv2
image = cv2.imread('download.jpg')
y=0
x=0
h=100
w=200
crop = image[y:y+h, x:x+w]
cv2.imshow('Image', crop)
cv2.waitKey(0)
this code crop an image from x=0,y=0 position to h=100,w=200
import numpy as np
import cv2
image = cv2.imread('download.jpg')
y=0
x=0
h=100
w=200
crop = image[y:y+h, x:x+w]
cv2.imshow('Image', crop)
cv2.waitKey(0)
回答 4
以下是裁剪图像的方法。
image_path:要编辑的图像的路径
坐标: x / y坐标的元组(x1,y1,x2,y2)[在mspaint中打开图像,然后在视图选项卡中检查“ ruler”以查看坐标]
saved_location:保存裁剪图像的路径
from PIL import Image
def crop(image_path, coords, saved_location:
image_obj = Image.open("Path of the image to be cropped")
cropped_image = image_obj.crop(coords)
cropped_image.save(saved_location)
cropped_image.show()
if __name__ == '__main__':
image = "image.jpg"
crop(image, (100, 210, 710,380 ), 'cropped.jpg')
Below is the way to crop an image.
image_path: The path to the image to edit
coords: A tuple of x/y coordinates (x1, y1, x2, y2)[open the image in
mspaint and check the “ruler” in view tab to see the coordinates]
saved_location: Path to save the cropped image
from PIL import Image
def crop(image_path, coords, saved_location:
image_obj = Image.open("Path of the image to be cropped")
cropped_image = image_obj.crop(coords)
cropped_image.save(saved_location)
cropped_image.show()
if __name__ == '__main__':
image = "image.jpg"
crop(image, (100, 210, 710,380 ), 'cropped.jpg')
回答 5
使用opencv复制边框功能进行健壮的裁剪:
def imcrop(img, bbox):
x1, y1, x2, y2 = bbox
if x1 < 0 or y1 < 0 or x2 > img.shape[1] or y2 > img.shape[0]:
img, x1, x2, y1, y2 = pad_img_to_fit_bbox(img, x1, x2, y1, y2)
return img[y1:y2, x1:x2, :]
def pad_img_to_fit_bbox(img, x1, x2, y1, y2):
img = cv2.copyMakeBorder(img, - min(0, y1), max(y2 - img.shape[0], 0),
-min(0, x1), max(x2 - img.shape[1], 0),cv2.BORDER_REPLICATE)
y2 += -min(0, y1)
y1 += -min(0, y1)
x2 += -min(0, x1)
x1 += -min(0, x1)
return img, x1, x2, y1, y2
Robust crop with opencv copy border function:
def imcrop(img, bbox):
x1, y1, x2, y2 = bbox
if x1 < 0 or y1 < 0 or x2 > img.shape[1] or y2 > img.shape[0]:
img, x1, x2, y1, y2 = pad_img_to_fit_bbox(img, x1, x2, y1, y2)
return img[y1:y2, x1:x2, :]
def pad_img_to_fit_bbox(img, x1, x2, y1, y2):
img = cv2.copyMakeBorder(img, - min(0, y1), max(y2 - img.shape[0], 0),
-min(0, x1), max(x2 - img.shape[1], 0),cv2.BORDER_REPLICATE)
y2 += -min(0, y1)
y1 += -min(0, y1)
x2 += -min(0, x1)
x1 += -min(0, x1)
return img, x1, x2, y1, y2
回答 6
这是一些更健壮的标记的代码(有点像在matlab中)
def imcrop(img, bbox):
x1,y1,x2,y2 = bbox
if x1 < 0 or y1 < 0 or x2 > img.shape[1] or y2 > img.shape[0]:
img, x1, x2, y1, y2 = pad_img_to_fit_bbox(img, x1, x2, y1, y2)
return img[y1:y2, x1:x2, :]
def pad_img_to_fit_bbox(img, x1, x2, y1, y2):
img = np.pad(img, ((np.abs(np.minimum(0, y1)), np.maximum(y2 - img.shape[0], 0)),
(np.abs(np.minimum(0, x1)), np.maximum(x2 - img.shape[1], 0)), (0,0)), mode="constant")
y1 += np.abs(np.minimum(0, y1))
y2 += np.abs(np.minimum(0, y1))
x1 += np.abs(np.minimum(0, x1))
x2 += np.abs(np.minimum(0, x1))
return img, x1, x2, y1, y2
here is some code for more robust imcrop ( a bit like in matlab )
def imcrop(img, bbox):
x1,y1,x2,y2 = bbox
if x1 < 0 or y1 < 0 or x2 > img.shape[1] or y2 > img.shape[0]:
img, x1, x2, y1, y2 = pad_img_to_fit_bbox(img, x1, x2, y1, y2)
return img[y1:y2, x1:x2, :]
def pad_img_to_fit_bbox(img, x1, x2, y1, y2):
img = np.pad(img, ((np.abs(np.minimum(0, y1)), np.maximum(y2 - img.shape[0], 0)),
(np.abs(np.minimum(0, x1)), np.maximum(x2 - img.shape[1], 0)), (0,0)), mode="constant")
y1 += np.abs(np.minimum(0, y1))
y2 += np.abs(np.minimum(0, y1))
x1 += np.abs(np.minimum(0, x1))
x2 += np.abs(np.minimum(0, x1))
return img, x1, x2, y1, y2
回答 7
另外,您可以使用tensorflow进行裁剪,并使用openCV从图像制作数组。
import cv2
img = cv2.imread('YOURIMAGE.png')
现在img
是一个(imageheight,imagewidth,3)形状数组。使用tensorflow裁剪数组:
import tensorflow as tf
offset_height=0
offset_width=0
target_height=500
target_width=500
x = tf.image.crop_to_bounding_box(
img, offset_height, offset_width, target_height, target_width
)
使用tf.keras重新组装该映像,因此我们可以对其进行查看:
tf.keras.preprocessing.image.array_to_img(
x, data_format=None, scale=True, dtype=None
)
这会在笔记本中打印出图片(已在Google Colab中测试)。
整个代码在一起:
import cv2
img = cv2.imread('YOURIMAGE.png')
import tensorflow as tf
offset_height=0
offset_width=0
target_height=500
target_width=500
x = tf.image.crop_to_bounding_box(
img, offset_height, offset_width, target_height, target_width
)
tf.keras.preprocessing.image.array_to_img(
x, data_format=None, scale=True, dtype=None
)
Alternatively, you could use tensorflow for the cropping and openCV for making an array from the image.
import cv2
img = cv2.imread('YOURIMAGE.png')
Now img
is a (imageheight, imagewidth, 3) shape array. Crop the array with tensorflow:
import tensorflow as tf
offset_height=0
offset_width=0
target_height=500
target_width=500
x = tf.image.crop_to_bounding_box(
img, offset_height, offset_width, target_height, target_width
)
Reassemble the image with tf.keras, so we can look at it if it worked:
tf.keras.preprocessing.image.array_to_img(
x, data_format=None, scale=True, dtype=None
)
This prints out the pic in a notebook (tested in Google Colab).
The whole code together:
import cv2
img = cv2.imread('YOURIMAGE.png')
import tensorflow as tf
offset_height=0
offset_width=0
target_height=500
target_width=500
x = tf.image.crop_to_bounding_box(
img, offset_height, offset_width, target_height, target_width
)
tf.keras.preprocessing.image.array_to_img(
x, data_format=None, scale=True, dtype=None
)