如何在Spark DataFrame中添加常量列?

问题:如何在Spark DataFrame中添加常量列?

我想在中添加DataFrame具有任意值的列(每行相同)。使用withColumn以下内容时出现错误:

dt.withColumn('new_column', 10).head(5)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-50-a6d0257ca2be> in <module>()
      1 dt = (messages
      2     .select(messages.fromuserid, messages.messagetype, floor(messages.datetime/(1000*60*5)).alias("dt")))
----> 3 dt.withColumn('new_column', 10).head(5)

/Users/evanzamir/spark-1.4.1/python/pyspark/sql/dataframe.pyc in withColumn(self, colName, col)
   1166         [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)]
   1167         """
-> 1168         return self.select('*', col.alias(colName))
   1169 
   1170     @ignore_unicode_prefix

AttributeError: 'int' object has no attribute 'alias'

似乎我可以通过添加和减去其他一列(这样它们加到零)然后添加我想要的数字(在这种情况下为10)来欺骗该函数按我的意愿工作:

dt.withColumn('new_column', dt.messagetype - dt.messagetype + 10).head(5)
[Row(fromuserid=425, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=47019141, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=49746356, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=93506471, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=80488242, messagetype=1, dt=4809600.0, new_column=10)]

这绝对是骇客,对吧?我认为还有一种更合法的方法吗?

I want to add a column in a DataFrame with some arbitrary value (that is the same for each row). I get an error when I use withColumn as follows:

dt.withColumn('new_column', 10).head(5)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-50-a6d0257ca2be> in <module>()
      1 dt = (messages
      2     .select(messages.fromuserid, messages.messagetype, floor(messages.datetime/(1000*60*5)).alias("dt")))
----> 3 dt.withColumn('new_column', 10).head(5)

/Users/evanzamir/spark-1.4.1/python/pyspark/sql/dataframe.pyc in withColumn(self, colName, col)
   1166         [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)]
   1167         """
-> 1168         return self.select('*', col.alias(colName))
   1169 
   1170     @ignore_unicode_prefix

AttributeError: 'int' object has no attribute 'alias'

It seems that I can trick the function into working as I want by adding and subtracting one of the other columns (so they add to zero) and then adding the number I want (10 in this case):

dt.withColumn('new_column', dt.messagetype - dt.messagetype + 10).head(5)
[Row(fromuserid=425, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=47019141, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=49746356, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=93506471, messagetype=1, dt=4809600.0, new_column=10),
 Row(fromuserid=80488242, messagetype=1, dt=4809600.0, new_column=10)]

This is supremely hacky, right? I assume there is a more legit way to do this?


回答 0

Spark 2.2+

Spark 2.2引入typedLit了support SeqMapTuplesSPARK-19254),并且应该支持以下调用(Scala):

import org.apache.spark.sql.functions.typedLit

df.withColumn("some_array", typedLit(Seq(1, 2, 3)))
df.withColumn("some_struct", typedLit(("foo", 1, 0.3)))
df.withColumn("some_map", typedLit(Map("key1" -> 1, "key2" -> 2)))

Spark 1.3以上lit),1.4以上arraystruct),2.0以上map):

的第二个参数DataFrame.withColumn应该是a,Column因此您必须使用文字:

from pyspark.sql.functions import lit

df.withColumn('new_column', lit(10))

如果您需要复杂的列,则可以使用以下代码块构建这些列array

from pyspark.sql.functions import array, create_map, struct

df.withColumn("some_array", array(lit(1), lit(2), lit(3)))
df.withColumn("some_struct", struct(lit("foo"), lit(1), lit(.3)))
df.withColumn("some_map", create_map(lit("key1"), lit(1), lit("key2"), lit(2)))

可以在Scala中使用完全相同的方法。

import org.apache.spark.sql.functions.{array, lit, map, struct}

df.withColumn("new_column", lit(10))
df.withColumn("map", map(lit("key1"), lit(1), lit("key2"), lit(2)))

为了提供名称structs或者使用alias上的每个字段:

df.withColumn(
    "some_struct",
    struct(lit("foo").alias("x"), lit(1).alias("y"), lit(0.3).alias("z"))
 )

cast整个对象

df.withColumn(
    "some_struct", 
    struct(lit("foo"), lit(1), lit(0.3)).cast("struct<x: string, y: integer, z: double>")
 )

尽管较慢,也可以使用UDF。

注意事项

可以使用相同的构造将常量参数传递给UDF或SQL函数。

Spark 2.2+

Spark 2.2 introduces typedLit to support Seq, Map, and Tuples (SPARK-19254) and following calls should be supported (Scala):

import org.apache.spark.sql.functions.typedLit

df.withColumn("some_array", typedLit(Seq(1, 2, 3)))
df.withColumn("some_struct", typedLit(("foo", 1, 0.3)))
df.withColumn("some_map", typedLit(Map("key1" -> 1, "key2" -> 2)))

Spark 1.3+ (lit), 1.4+ (array, struct), 2.0+ (map):

The second argument for DataFrame.withColumn should be a Column so you have to use a literal:

from pyspark.sql.functions import lit

df.withColumn('new_column', lit(10))

If you need complex columns you can build these using blocks like array:

from pyspark.sql.functions import array, create_map, struct

df.withColumn("some_array", array(lit(1), lit(2), lit(3)))
df.withColumn("some_struct", struct(lit("foo"), lit(1), lit(.3)))
df.withColumn("some_map", create_map(lit("key1"), lit(1), lit("key2"), lit(2)))

Exactly the same methods can be used in Scala.

import org.apache.spark.sql.functions.{array, lit, map, struct}

df.withColumn("new_column", lit(10))
df.withColumn("map", map(lit("key1"), lit(1), lit("key2"), lit(2)))

To provide names for structs use either alias on each field:

df.withColumn(
    "some_struct",
    struct(lit("foo").alias("x"), lit(1).alias("y"), lit(0.3).alias("z"))
 )

or cast on the whole object

df.withColumn(
    "some_struct", 
    struct(lit("foo"), lit(1), lit(0.3)).cast("struct<x: string, y: integer, z: double>")
 )

It is also possible, although slower, to use an UDF.

Note:

The same constructs can be used to pass constant arguments to UDFs or SQL functions.


回答 1

在spark 2.2中,有两种方法可以在DataFrame的列中添加常量值:

1)使用 lit

2)使用typedLit

两者之间的区别在于typedLit还可以处理参数化的Scala类型,例如List,Seq和Map

样本数据框:

val df = spark.createDataFrame(Seq((0,"a"),(1,"b"),(2,"c"))).toDF("id", "col1")

+---+----+
| id|col1|
+---+----+
|  0|   a|
|  1|   b|
+---+----+

1)使用lit在名为newcol的新列中添加常量字符串值:

import org.apache.spark.sql.functions.lit
val newdf = df.withColumn("newcol",lit("myval"))

结果:

+---+----+------+
| id|col1|newcol|
+---+----+------+
|  0|   a| myval|
|  1|   b| myval|
+---+----+------+

2)使用typedLit

import org.apache.spark.sql.functions.typedLit
df.withColumn("newcol", typedLit(("sample", 10, .044)))

结果:

+---+----+-----------------+
| id|col1|           newcol|
+---+----+-----------------+
|  0|   a|[sample,10,0.044]|
|  1|   b|[sample,10,0.044]|
|  2|   c|[sample,10,0.044]|
+---+----+-----------------+

In spark 2.2 there are two ways to add constant value in a column in DataFrame:

1) Using lit

2) Using typedLit.

The difference between the two is that typedLit can also handle parameterized scala types e.g. List, Seq, and Map

Sample DataFrame:

val df = spark.createDataFrame(Seq((0,"a"),(1,"b"),(2,"c"))).toDF("id", "col1")

+---+----+
| id|col1|
+---+----+
|  0|   a|
|  1|   b|
+---+----+

1) Using lit: Adding constant string value in new column named newcol:

import org.apache.spark.sql.functions.lit
val newdf = df.withColumn("newcol",lit("myval"))

Result:

+---+----+------+
| id|col1|newcol|
+---+----+------+
|  0|   a| myval|
|  1|   b| myval|
+---+----+------+

2) Using typedLit:

import org.apache.spark.sql.functions.typedLit
df.withColumn("newcol", typedLit(("sample", 10, .044)))

Result:

+---+----+-----------------+
| id|col1|           newcol|
+---+----+-----------------+
|  0|   a|[sample,10,0.044]|
|  1|   b|[sample,10,0.044]|
|  2|   c|[sample,10,0.044]|
+---+----+-----------------+