问题:如何复制字典并仅编辑副本
有人可以向我解释一下吗?这对我来说毫无意义。
我将字典复制到另一个字典中,然后编辑第二个字典,并且两者都已更改。为什么会这样呢?
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2
{'key2': 'value2', 'key1': 'value1'}
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}
Can someone please explain this to me? This doesn’t make any sense to me.
I copy a dictionary into another and edit the second and both are changed. Why is this happening?
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2
{'key2': 'value2', 'key1': 'value1'}
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}
回答 0
Python 绝不会隐式复制对象。设置时dict2 = dict1
,将使它们引用同一精确的dict对象,因此,在对它进行突变时,对其的所有引用都将始终引用该对象的当前状态。
如果要复制字典(这种情况很少见),则必须使用
dict2 = dict(dict1)
要么
dict2 = dict1.copy()
Python never implicitly copies objects. When you set dict2 = dict1
, you are making them refer to the same exact dict object, so when you mutate it, all references to it keep referring to the object in its current state.
If you want to copy the dict (which is rare), you have to do so explicitly with
dict2 = dict(dict1)
or
dict2 = dict1.copy()
回答 1
分配时dict2 = dict1
,您并没有复制该文件的副本dict1
,导致dict2
它只是它的另一个名称dict1
。
要复制字典等可变类型,请使用copy
/ deepcopy
的copy
模块。
import copy
dict2 = copy.deepcopy(dict1)
When you assign dict2 = dict1
, you are not making a copy of dict1
, it results in dict2
being just another name for dict1
.
To copy the mutable types like dictionaries, use copy
/ deepcopy
of the copy
module.
import copy
dict2 = copy.deepcopy(dict1)
回答 2
虽然dict.copy()
和dict(dict1)
生成副本,但它们只是浅表副本。如果要深拷贝,copy.deepcopy(dict1)
则是必需的。一个例子:
>>> source = {'a': 1, 'b': {'m': 4, 'n': 5, 'o': 6}, 'c': 3}
>>> copy1 = x.copy()
>>> copy2 = dict(x)
>>> import copy
>>> copy3 = copy.deepcopy(x)
>>> source['a'] = 10 # a change to first-level properties won't affect copies
>>> source
{'a': 10, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy1
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy2
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy3
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> source['b']['m'] = 40 # a change to deep properties WILL affect shallow copies 'b.m' property
>>> source
{'a': 10, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy1
{'a': 1, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy2
{'a': 1, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy3 # Deep copy's 'b.m' property is unaffected
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
关于浅层副本与深层副本,来自Python copy
模块docs:
浅表复制和深度复制之间的区别仅与复合对象(包含其他对象的对象,如列表或类实例)有关:
- 浅表副本构造一个新的复合对象,然后(在可能的范围内)将对原始对象中找到的对象的引用插入其中。
- 深层副本将构造一个新的复合对象,然后递归地将原始对象中发现的对象的副本插入其中。
While dict.copy()
and dict(dict1)
generates a copy, they are only shallow copies. If you want a deep copy, copy.deepcopy(dict1)
is required. An example:
>>> source = {'a': 1, 'b': {'m': 4, 'n': 5, 'o': 6}, 'c': 3}
>>> copy1 = x.copy()
>>> copy2 = dict(x)
>>> import copy
>>> copy3 = copy.deepcopy(x)
>>> source['a'] = 10 # a change to first-level properties won't affect copies
>>> source
{'a': 10, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy1
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy2
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> copy3
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
>>> source['b']['m'] = 40 # a change to deep properties WILL affect shallow copies 'b.m' property
>>> source
{'a': 10, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy1
{'a': 1, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy2
{'a': 1, 'c': 3, 'b': {'m': 40, 'o': 6, 'n': 5}}
>>> copy3 # Deep copy's 'b.m' property is unaffected
{'a': 1, 'c': 3, 'b': {'m': 4, 'o': 6, 'n': 5}}
Regarding shallow vs deep copies, from the Python copy
module docs:
The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects, like lists or class instances):
- A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to the objects found in the original.
- A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found in the original.
回答 3
在python 3.5+上,有一种更简单的方法可以通过使用**解包运算符来实现浅表副本。由Pep 448定义。
>>>dict1 = {"key1": "value1", "key2": "value2"}
>>>dict2 = {**dict1}
>>>print(dict2)
{'key1': 'value1', 'key2': 'value2'}
>>>dict2["key2"] = "WHY?!"
>>>print(dict1)
{'key1': 'value1', 'key2': 'value2'}
>>>print(dict2)
{'key1': 'value1', 'key2': 'WHY?!'}
**将字典解包为新字典,然后将其分配给dict2。
我们还可以确认每个词典都有不同的ID。
>>>id(dict1)
178192816
>>>id(dict2)
178192600
如果需要深层副本,那么仍然可以使用copy.deepcopy()。
On python 3.5+ there is an easier way to achieve a shallow copy by using the ** unpackaging operator. Defined by Pep 448.
>>>dict1 = {"key1": "value1", "key2": "value2"}
>>>dict2 = {**dict1}
>>>print(dict2)
{'key1': 'value1', 'key2': 'value2'}
>>>dict2["key2"] = "WHY?!"
>>>print(dict1)
{'key1': 'value1', 'key2': 'value2'}
>>>print(dict2)
{'key1': 'value1', 'key2': 'WHY?!'}
** unpackages the dictionary into a new dictionary that is then assigned to dict2.
We can also confirm that each dictionary has a distinct id.
>>>id(dict1)
178192816
>>>id(dict2)
178192600
If a deep copy is needed then copy.deepcopy() is still the way to go.
回答 4
最好的和最简单的方法创建一个副本一个的字典中都Python的2.7和3是…
要创建简单(单级)字典的副本:
1.使用dict()方法,而不是生成指向现有dict的引用。
my_dict1 = dict()
my_dict1["message"] = "Hello Python"
print(my_dict1) # {'message':'Hello Python'}
my_dict2 = dict(my_dict1)
print(my_dict2) # {'message':'Hello Python'}
# Made changes in my_dict1
my_dict1["name"] = "Emrit"
print(my_dict1) # {'message':'Hello Python', 'name' : 'Emrit'}
print(my_dict2) # {'message':'Hello Python'}
2.使用python字典的内置update()方法。
my_dict2 = dict()
my_dict2.update(my_dict1)
print(my_dict2) # {'message':'Hello Python'}
# Made changes in my_dict1
my_dict1["name"] = "Emrit"
print(my_dict1) # {'message':'Hello Python', 'name' : 'Emrit'}
print(my_dict2) # {'message':'Hello Python'}
要创建嵌套或复杂字典的副本:
使用内置的复制模块,该模块提供通用的浅层和深层复制操作。Python 2.7和3中都提供了此模块。*
import copy
my_dict2 = copy.deepcopy(my_dict1)
The best and the easiest ways to create a copy of a dict in both Python 2.7 and 3 are…
To create a copy of simple(single-level) dictionary:
1. Using dict() method, instead of generating a reference that points to the existing dict.
my_dict1 = dict()
my_dict1["message"] = "Hello Python"
print(my_dict1) # {'message':'Hello Python'}
my_dict2 = dict(my_dict1)
print(my_dict2) # {'message':'Hello Python'}
# Made changes in my_dict1
my_dict1["name"] = "Emrit"
print(my_dict1) # {'message':'Hello Python', 'name' : 'Emrit'}
print(my_dict2) # {'message':'Hello Python'}
2. Using the built-in update() method of python dictionary.
my_dict2 = dict()
my_dict2.update(my_dict1)
print(my_dict2) # {'message':'Hello Python'}
# Made changes in my_dict1
my_dict1["name"] = "Emrit"
print(my_dict1) # {'message':'Hello Python', 'name' : 'Emrit'}
print(my_dict2) # {'message':'Hello Python'}
To create a copy of nested or complex dictionary:
Use the built-in copy module, which provides a generic shallow and deep copy operations. This module is present in both Python 2.7 and 3.*
import copy
my_dict2 = copy.deepcopy(my_dict1)
回答 5
您也可以使用字典理解功能来制作新字典。这样可以避免导入副本。
dout = dict((k,v) for k,v in mydict.items())
当然,在python> = 2.7中,您可以执行以下操作:
dout = {k:v for k,v in mydict.items()}
但是对于向后兼容,顶级方法更好。
You can also just make a new dictionary with a dictionary comprehension. This avoids importing copy.
dout = dict((k,v) for k,v in mydict.items())
Of course in python >= 2.7 you can do:
dout = {k:v for k,v in mydict.items()}
But for backwards compat., the top method is better.
回答 6
除了提供的其他解决方案外,您还可以**
将字典集成到一个空字典中,例如,
shallow_copy_of_other_dict = {**other_dict}
。
现在,您将拥有的“浅”副本other_dict
。
应用于您的示例:
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = {**dict1}
>>> dict2
{'key1': 'value1', 'key2': 'value2'}
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key1': 'value1', 'key2': 'value2'}
>>>
指针:浅拷贝和深拷贝之间的区别
In addition to the other provided solutions, you can use **
to integrate the dictionary into an empty dictionary, e.g.,
shallow_copy_of_other_dict = {**other_dict}
.
Now you will have a “shallow” copy of other_dict
.
Applied to your example:
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = {**dict1}
>>> dict2
{'key1': 'value1', 'key2': 'value2'}
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key1': 'value1', 'key2': 'value2'}
>>>
Pointer: Difference between shallow and deep copys
回答 7
Python中的赋值语句不复制对象,它们在目标和对象之间创建绑定。
因此,dict2 = dict1
它会在dict2
和dict1
引用的对象之间产生另一个绑定。
如果要复制字典,可以使用copy module
。复制模块有两个接口:
copy.copy(x)
Return a shallow copy of x.
copy.deepcopy(x)
Return a deep copy of x.
浅表复制和深度复制之间的区别仅与复合对象(包含其他对象的对象,如列表或类实例)有关:
甲浅拷贝构造新化合物对象,然后(在可能的范围)插入到它的对象引用原始发现。
甲深层副本构造新化合物的对象,然后,递归地,插入拷贝到它的目的在原始发现。
例如,在python 2.7.9中:
>>> import copy
>>> a = [1,2,3,4,['a', 'b']]
>>> b = a
>>> c = copy.copy(a)
>>> d = copy.deepcopy(a)
>>> a.append(5)
>>> a[4].append('c')
结果是:
>>> a
[1, 2, 3, 4, ['a', 'b', 'c'], 5]
>>> b
[1, 2, 3, 4, ['a', 'b', 'c'], 5]
>>> c
[1, 2, 3, 4, ['a', 'b', 'c']]
>>> d
[1, 2, 3, 4, ['a', 'b']]
Assignment statements in Python do not copy objects, they create bindings between a target and an object.
so, dict2 = dict1
, it results another binding between dict2
and the object that dict1
refer to.
if you want to copy a dict, you can use the copy module
.
The copy module has two interface:
copy.copy(x)
Return a shallow copy of x.
copy.deepcopy(x)
Return a deep copy of x.
The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects, like lists or class instances):
A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to the objects found in the original.
A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found in the original.
For example, in python 2.7.9:
>>> import copy
>>> a = [1,2,3,4,['a', 'b']]
>>> b = a
>>> c = copy.copy(a)
>>> d = copy.deepcopy(a)
>>> a.append(5)
>>> a[4].append('c')
and the result is:
>>> a
[1, 2, 3, 4, ['a', 'b', 'c'], 5]
>>> b
[1, 2, 3, 4, ['a', 'b', 'c'], 5]
>>> c
[1, 2, 3, 4, ['a', 'b', 'c']]
>>> d
[1, 2, 3, 4, ['a', 'b']]
回答 8
您可以通过dict
使用其他关键字参数调用构造函数来一次性复制和编辑新构造的副本:
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict(dict1, key2="WHY?!")
>>> dict1
{'key2': 'value2', 'key1': 'value1'}
>>> dict2
{'key2': 'WHY?!', 'key1': 'value1'}
You can copy and edit the newly constructed copy in one go by calling the dict
constructor with additional keyword arguments:
>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict(dict1, key2="WHY?!")
>>> dict1
{'key2': 'value2', 'key1': 'value1'}
>>> dict2
{'key2': 'WHY?!', 'key1': 'value1'}
回答 9
最初,这也使我感到困惑,因为我来自C语言。
在C语言中,变量是内存中定义类型的位置。分配给变量会将数据复制到变量的存储位置。
但是在Python中,变量的作用更像是指向对象的指针。因此,将一个变量分配给另一个变量不会产生副本,只会使该变量名称指向同一对象。
This confused me too, initially, because I was coming from a C background.
In C, a variable is a location in memory with a defined type. Assigning to a variable copies the data into the variable’s memory location.
But in Python, variables act more like pointers to objects. So assigning one variable to another doesn’t make a copy, it just makes that variable name point to the same object.
回答 10
python中的每个变量(类似于dict1
或str
或的东西__builtins__
都是指向机器内部某些隐藏的柏拉图“对象”的指针。
如果设置dict1 = dict2
,则只需指向dict1
与相同的对象(或内存位置,或类似的对象)dict2
。现在,所引用的对象与所引用的对象dict1
相同dict2
。
您可以检查:dict1 is dict2
应该是True
。另外,id(dict1)
应与相同id(dict2)
。
您想要dict1 = copy(dict2)
或dict1 = deepcopy(dict2)
。
copy
和之间的区别deepcopy
?deepcopy
将确保dict2
(您是否将其指向列表?)的元素也是副本。
我用的不是deepcopy
很多-在我看来,编写需要它的代码通常是不明智的做法。
Every variable in python (stuff like dict1
or str
or __builtins__
is a pointer to some hidden platonic “object” inside the machine.
If you set dict1 = dict2
,you just point dict1
to the same object (or memory location, or whatever analogy you like) as dict2
. Now, the object referenced by dict1
is the same object referenced by dict2
.
You can check: dict1 is dict2
should be True
. Also, id(dict1)
should be the same as id(dict2)
.
You want dict1 = copy(dict2)
, or dict1 = deepcopy(dict2)
.
The difference between copy
and deepcopy
? deepcopy
will make sure that the elements of dict2
(did you point it at a list?) are also copies.
I don’t use deepcopy
much – it’s usually poor practice to write code that needs it (in my opinion).
回答 11
dict1
是引用基础字典对象的符号。分配dict1
给dict2
仅分配相同的参考。通过dict2
符号更改键的值会更改基础对象,这也会影响dict1
。这很混乱。
关于不可变值的推理要比引用容易得多,因此请尽可能制作副本:
person = {'name': 'Mary', 'age': 25}
one_year_later = {**person, 'age': 26} # does not mutate person dict
在语法上与以下内容相同:
one_year_later = dict(person, age=26)
dict1
is a symbol that references an underlying dictionary object. Assigning dict1
to dict2
merely assigns the same reference. Changing a key’s value via the dict2
symbol changes the underlying object, which also affects dict1
. This is confusing.
It is far easier to reason about immutable values than references, so make copies whenever possible:
person = {'name': 'Mary', 'age': 25}
one_year_later = {**person, 'age': 26} # does not mutate person dict
This is syntactically the same as:
one_year_later = dict(person, age=26)
回答 12
dict2 = dict1
不复制字典。它只是为程序员提供了第二种方法(dict2
)来引用同一词典。
dict2 = dict1
does not copy the dictionary. It simply gives you the programmer a second way (dict2
) to refer to the same dictionary.
回答 13
>>> dict2 = dict1
# dict2 is bind to the same Dict object which binds to dict1, so if you modify dict2, you will modify the dict1
复制Dict对象的方法很多,我只是简单地使用
dict_1 = {
'a':1,
'b':2
}
dict_2 = {}
dict_2.update(dict_1)
>>> dict2 = dict1
# dict2 is bind to the same Dict object which binds to dict1, so if you modify dict2, you will modify the dict1
There are many ways to copy Dict object, I simply use
dict_1 = {
'a':1,
'b':2
}
dict_2 = {}
dict_2.update(dict_1)
回答 14
正如其他人所解释的,内置dict
功能无法满足您的需求。但是在Python2中(可能还有3个),您可以轻松地创建一个ValueDict
用于复制的类,=
因此可以确保原始版本不会更改。
class ValueDict(dict):
def __ilshift__(self, args):
result = ValueDict(self)
if isinstance(args, dict):
dict.update(result, args)
else:
dict.__setitem__(result, *args)
return result # Pythonic LVALUE modification
def __irshift__(self, args):
result = ValueDict(self)
dict.__delitem__(result, args)
return result # Pythonic LVALUE modification
def __setitem__(self, k, v):
raise AttributeError, \
"Use \"value_dict<<='%s', ...\" instead of \"d[%s] = ...\"" % (k,k)
def __delitem__(self, k):
raise AttributeError, \
"Use \"value_dict>>='%s'\" instead of \"del d[%s]" % (k,k)
def update(self, d2):
raise AttributeError, \
"Use \"value_dict<<=dict2\" instead of \"value_dict.update(dict2)\""
# test
d = ValueDict()
d <<='apples', 5
d <<='pears', 8
print "d =", d
e = d
e <<='bananas', 1
print "e =", e
print "d =", d
d >>='pears'
print "d =", d
d <<={'blueberries': 2, 'watermelons': 315}
print "d =", d
print "e =", e
print "e['bananas'] =", e['bananas']
# result
d = {'apples': 5, 'pears': 8}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
d = {'apples': 5, 'pears': 8}
d = {'apples': 5}
d = {'watermelons': 315, 'blueberries': 2, 'apples': 5}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
e['bananas'] = 1
# e[0]=3
# would give:
# AttributeError: Use "value_dict<<='0', ..." instead of "d[0] = ..."
请参考此处讨论的左值修改模式:Python 2.7-左值修改的纯语法。关键的观察是,str
和int
表现为在Python值(即使它们实际上是引擎盖下的不可变对象)。当您观察到这一点时,也请注意,关于str
或,没有什么神奇的特别之处int
。dict
可以以几乎相同的方式使用,我可以想到很多ValueDict
有意义的情况。
As others have explained, the built-in dict
does not do what you want. But in Python2 (and probably 3 too) you can easily create a ValueDict
class that copies with =
so you can be sure that the original will not change.
class ValueDict(dict):
def __ilshift__(self, args):
result = ValueDict(self)
if isinstance(args, dict):
dict.update(result, args)
else:
dict.__setitem__(result, *args)
return result # Pythonic LVALUE modification
def __irshift__(self, args):
result = ValueDict(self)
dict.__delitem__(result, args)
return result # Pythonic LVALUE modification
def __setitem__(self, k, v):
raise AttributeError, \
"Use \"value_dict<<='%s', ...\" instead of \"d[%s] = ...\"" % (k,k)
def __delitem__(self, k):
raise AttributeError, \
"Use \"value_dict>>='%s'\" instead of \"del d[%s]" % (k,k)
def update(self, d2):
raise AttributeError, \
"Use \"value_dict<<=dict2\" instead of \"value_dict.update(dict2)\""
# test
d = ValueDict()
d <<='apples', 5
d <<='pears', 8
print "d =", d
e = d
e <<='bananas', 1
print "e =", e
print "d =", d
d >>='pears'
print "d =", d
d <<={'blueberries': 2, 'watermelons': 315}
print "d =", d
print "e =", e
print "e['bananas'] =", e['bananas']
# result
d = {'apples': 5, 'pears': 8}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
d = {'apples': 5, 'pears': 8}
d = {'apples': 5}
d = {'watermelons': 315, 'blueberries': 2, 'apples': 5}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
e['bananas'] = 1
# e[0]=3
# would give:
# AttributeError: Use "value_dict<<='0', ..." instead of "d[0] = ..."
Please refer to the lvalue modification pattern discussed here: Python 2.7 – clean syntax for lvalue modification. The key observation is that str
and int
behave as values in Python (even though they’re actually immutable objects under the hood). While you’re observing that, please also observe that nothing is magically special about str
or int
. dict
can be used in much the same ways, and I can think of many cases where ValueDict
makes sense.
回答 15
以下代码,是遵循json语法的字典的,比deepcopy快3倍以上
def CopyDict(dSrc):
try:
return json.loads(json.dumps(dSrc))
except Exception as e:
Logger.warning("Can't copy dict the preferred way:"+str(dSrc))
return deepcopy(dSrc)
the following code, which is on dicts which follows json syntax more than 3 times faster than deepcopy
def CopyDict(dSrc):
try:
return json.loads(json.dumps(dSrc))
except Exception as e:
Logger.warning("Can't copy dict the preferred way:"+str(dSrc))
return deepcopy(dSrc)
回答 16
尝试深复制类w / o将其分配给变量的字典属性时,遇到了一种特殊的行为
new = copy.deepcopy(my_class.a)
不起作用,即修改new
修改my_class.a
但是,如果您这样做old = my_class.a
,那么new = copy.deepcopy(old)
它会完美运行,即修改new
不会影响my_class.a
我不确定为什么会发生这种情况,但希望它可以节省一些时间!:)
i ran into a peculiar behavior when trying to deep copy dictionary property of class w/o assigning it to variable
new = copy.deepcopy(my_class.a)
doesn’t work i.e. modifying new
modifies my_class.a
but if you do old = my_class.a
and then new = copy.deepcopy(old)
it works perfectly i.e. modifying new
does not affect my_class.a
I am not sure why this happens, but hope it helps save some hours! :)
回答 17
因为dict2 = dict1,dict2保存了对dict1的引用。dict1和dict2都指向内存中的同一位置。这是在python中使用可变对象时的正常情况。使用python中的可变对象时,必须小心,因为它很难调试。如下面的例子。
my_users = {
'ids':[1,2],
'blocked_ids':[5,6,7]
}
ids = my_users.get('ids')
ids.extend(my_users.get('blocked_ids')) #all_ids
print ids#output:[1, 2, 5, 6, 7]
print my_users #output:{'blocked_ids': [5, 6, 7], 'ids': [1, 2, 5, 6, 7]}
此示例意图是获取所有用户ID,包括被阻止的ID。我们是从ids变量获得的,但是我们也无意间更新了my_users的值。当你扩展的IDS与blocked_ids my_users得到了更新,因为IDS参考my_users。
because, dict2 = dict1, dict2 holds the reference to dict1. Both dict1 and dict2 points to the same location in the memory. This is just a normal case while working with mutable objects in python. When you are working with mutable objects in python you must be careful as it is hard to debug. Such as the following example.
my_users = {
'ids':[1,2],
'blocked_ids':[5,6,7]
}
ids = my_users.get('ids')
ids.extend(my_users.get('blocked_ids')) #all_ids
print ids#output:[1, 2, 5, 6, 7]
print my_users #output:{'blocked_ids': [5, 6, 7], 'ids': [1, 2, 5, 6, 7]}
This example intention is to get all the user ids including blocked ids.
That we got from ids variable but we also updated the value of my_users unintentionally. when you extended the ids with blocked_ids my_users got updated because ids refer to my_users.
回答 18
使用for循环进行复制:
orig = {"X2": 674.5, "X3": 245.0}
copy = {}
for key in orig:
copy[key] = orig[key]
print(orig) # {'X2': 674.5, 'X3': 245.0}
print(copy) # {'X2': 674.5, 'X3': 245.0}
copy["X2"] = 808
print(orig) # {'X2': 674.5, 'X3': 245.0}
print(copy) # {'X2': 808, 'X3': 245.0}
Copying by using a for loop:
orig = {"X2": 674.5, "X3": 245.0}
copy = {}
for key in orig:
copy[key] = orig[key]
print(orig) # {'X2': 674.5, 'X3': 245.0}
print(copy) # {'X2': 674.5, 'X3': 245.0}
copy["X2"] = 808
print(orig) # {'X2': 674.5, 'X3': 245.0}
print(copy) # {'X2': 808, 'X3': 245.0}
回答 19
您可以直接使用:
dict2 = eval(repr(dict1))
其中对象dict2是dict1的独立副本,因此您可以修改dict2而不会影响dict1。
这适用于任何类型的对象。
You can use directly:
dict2 = eval(repr(dict1))
where object dict2 is an independent copy of dict1, so you can modify dict2 without affecting dict1.
This works for any kind of object.