问题:如何将熊猫数据添加到现有的csv文件中?
我想知道是否可以使用pandas to_csv()
函数将数据框添加到现有的csv文件中。csv文件与加载的数据具有相同的结构。
I want to know if it is possible to use the pandas to_csv()
function to add a dataframe to an existing csv file. The csv file has the same structure as the loaded data.
回答 0
您可以在pandas to_csv
函数中指定python写入模式。对于追加,它是“ a”。
在您的情况下:
df.to_csv('my_csv.csv', mode='a', header=False)
默认模式为“ w”。
You can specify a python write mode in the pandas to_csv
function. For append it is ‘a’.
In your case:
df.to_csv('my_csv.csv', mode='a', header=False)
The default mode is ‘w’.
回答 1
您可以通过在追加模式下打开文件来追加到csv :
with open('my_csv.csv', 'a') as f:
df.to_csv(f, header=False)
如果这是您的csv,请执行以下操作foo.csv
:
,A,B,C
0,1,2,3
1,4,5,6
如果您阅读了该内容,然后附加,例如df + 6
:
In [1]: df = pd.read_csv('foo.csv', index_col=0)
In [2]: df
Out[2]:
A B C
0 1 2 3
1 4 5 6
In [3]: df + 6
Out[3]:
A B C
0 7 8 9
1 10 11 12
In [4]: with open('foo.csv', 'a') as f:
(df + 6).to_csv(f, header=False)
foo.csv
变成:
,A,B,C
0,1,2,3
1,4,5,6
0,7,8,9
1,10,11,12
You can append to a csv by opening the file in append mode:
with open('my_csv.csv', 'a') as f:
df.to_csv(f, header=False)
If this was your csv, foo.csv
:
,A,B,C
0,1,2,3
1,4,5,6
If you read that and then append, for example, df + 6
:
In [1]: df = pd.read_csv('foo.csv', index_col=0)
In [2]: df
Out[2]:
A B C
0 1 2 3
1 4 5 6
In [3]: df + 6
Out[3]:
A B C
0 7 8 9
1 10 11 12
In [4]: with open('foo.csv', 'a') as f:
(df + 6).to_csv(f, header=False)
foo.csv
becomes:
,A,B,C
0,1,2,3
1,4,5,6
0,7,8,9
1,10,11,12
回答 2
with open(filename, 'a') as f:
df.to_csv(f, header=f.tell()==0)
- 除非存在,否则创建文件,否则追加
- 如果正在创建文件,则添加标题,否则跳过它
with open(filename, 'a') as f:
df.to_csv(f, header=f.tell()==0)
- Create file unless exists, otherwise append
- Add header if file is being created, otherwise skip it
回答 3
我在一些标头检查保护措施中使用了一个辅助功能,以处理所有问题:
def appendDFToCSV_void(df, csvFilePath, sep=","):
import os
if not os.path.isfile(csvFilePath):
df.to_csv(csvFilePath, mode='a', index=False, sep=sep)
elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns):
raise Exception("Columns do not match!! Dataframe has " + str(len(df.columns)) + " columns. CSV file has " + str(len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) + " columns.")
elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, sep=sep).columns).all():
raise Exception("Columns and column order of dataframe and csv file do not match!!")
else:
df.to_csv(csvFilePath, mode='a', index=False, sep=sep, header=False)
A little helper function I use with some header checking safeguards to handle it all:
def appendDFToCSV_void(df, csvFilePath, sep=","):
import os
if not os.path.isfile(csvFilePath):
df.to_csv(csvFilePath, mode='a', index=False, sep=sep)
elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns):
raise Exception("Columns do not match!! Dataframe has " + str(len(df.columns)) + " columns. CSV file has " + str(len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) + " columns.")
elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, sep=sep).columns).all():
raise Exception("Columns and column order of dataframe and csv file do not match!!")
else:
df.to_csv(csvFilePath, mode='a', index=False, sep=sep, header=False)
回答 4
最初从pyspark数据帧开始-给定pyspark数据帧中的架构/列类型,我遇到类型转换错误(转换为pandas df然后附加到csv时)
通过将每个df中的所有列都强制为string类型,然后将其附加到csv来解决此问题,如下所示:
with open('testAppend.csv', 'a') as f:
df2.toPandas().astype(str).to_csv(f, header=False)
Initially starting with a pyspark dataframes – I got type conversion errors (when converting to pandas df’s and then appending to csv) given the schema/column types in my pyspark dataframes
Solved the problem by forcing all columns in each df to be of type string and then appending this to csv as follows:
with open('testAppend.csv', 'a') as f:
df2.toPandas().astype(str).to_csv(f, header=False)
回答 5
晚了一点,但是如果您多次打开和关闭文件或记录数据,统计信息等,您也可以使用上下文管理器。
from contextlib import contextmanager
import pandas as pd
@contextmanager
def open_file(path, mode):
file_to=open(path,mode)
yield file_to
file_to.close()
##later
saved_df=pd.DataFrame(data)
with open_file('yourcsv.csv','r') as infile:
saved_df.to_csv('yourcsv.csv',mode='a',header=False)`
A bit late to the party but you can also use a context manager, if you’re opening and closing your file multiple times, or logging data, statistics, etc.
from contextlib import contextmanager
import pandas as pd
@contextmanager
def open_file(path, mode):
file_to=open(path,mode)
yield file_to
file_to.close()
##later
saved_df=pd.DataFrame(data)
with open_file('yourcsv.csv','r') as infile:
saved_df.to_csv('yourcsv.csv',mode='a',header=False)`