问题:如何将CSV数据读入NumPy中的记录数组?
我不知道是否有一个CSV文件的内容导入到一个记录阵列直接的方式,很多的方式是R的read.table()
,read.delim()
和read.csv()
家庭的进口数据与R的数据帧?
还是使用csv.reader()然后应用类似内容的最佳方法numpy.core.records.fromrecords()
?
I wonder if there is a direct way to import the contents of a CSV file into a record array, much in the way that R’s read.table()
, read.delim()
, and read.csv()
family imports data to R’s data frame?
Or is the best way to use csv.reader() and then apply something like numpy.core.records.fromrecords()
?
回答 0
您可以genfromtxt()
通过将delimiter
kwarg 设置为逗号来使用Numpy的方法。
from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',')
有关该功能的更多信息,请参见其相应的文档。
You can use Numpy’s genfromtxt()
method to do so, by setting the delimiter
kwarg to a comma.
from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',')
More information on the function can be found at its respective documentation.
回答 1
我会read_csv
从pandas
库中推荐该功能:
import pandas as pd
df=pd.read_csv('myfile.csv', sep=',',header=None)
df.values
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
这提供了一个熊猫DataFrame-允许许多有用的数据操作功能,而numpy记录数组无法直接使用这些功能。
DataFrame是二维标记的数据结构,具有可能不同类型的列。您可以将其视为电子表格或SQL表…
我也建议genfromtxt
。但是,由于该问题要求记录数组,而不是普通数组,因此dtype=None
需要将参数添加到genfromtxt
调用中:
给定一个输入文件,myfile.csv
:
1.0, 2, 3
4, 5.5, 6
import numpy as np
np.genfromtxt('myfile.csv',delimiter=',')
给出一个数组:
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
和
np.genfromtxt('myfile.csv',delimiter=',',dtype=None)
给出一个记录数组:
array([(1.0, 2.0, 3), (4.0, 5.5, 6)],
dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<i4')])
这样的优点是可以轻松导入具有多种数据类型(包括字符串)的文件。
I would recommend the read_csv
function from the pandas
library:
import pandas as pd
df=pd.read_csv('myfile.csv', sep=',',header=None)
df.values
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
This gives a pandas DataFrame – allowing many useful data manipulation functions which are not directly available with numpy record arrays.
DataFrame is a 2-dimensional labeled data structure with columns of
potentially different types. You can think of it like a spreadsheet or
SQL table…
I would also recommend genfromtxt
. However, since the question asks for a record array, as opposed to a normal array, the dtype=None
parameter needs to be added to the genfromtxt
call:
Given an input file, myfile.csv
:
1.0, 2, 3
4, 5.5, 6
import numpy as np
np.genfromtxt('myfile.csv',delimiter=',')
gives an array:
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
and
np.genfromtxt('myfile.csv',delimiter=',',dtype=None)
gives a record array:
array([(1.0, 2.0, 3), (4.0, 5.5, 6)],
dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<i4')])
This has the advantage that file with multiple data types (including strings) can be easily imported.
回答 2
我定时了
from numpy import genfromtxt
genfromtxt(fname = dest_file, dtype = (<whatever options>))
与
import csv
import numpy as np
with open(dest_file,'r') as dest_f:
data_iter = csv.reader(dest_f,
delimiter = delimiter,
quotechar = '"')
data = [data for data in data_iter]
data_array = np.asarray(data, dtype = <whatever options>)
在460万行,约70列的数据上,发现NumPy路径花费了2分16秒,而csv-list理解方法花费了13秒。
我建议使用csv-list理解方法,因为它很可能依赖于预编译的库,而不像NumPy那样依赖于解释器。我怀疑pandas方法会有类似的解释器开销。
I timed the
from numpy import genfromtxt
genfromtxt(fname = dest_file, dtype = (<whatever options>))
versus
import csv
import numpy as np
with open(dest_file,'r') as dest_f:
data_iter = csv.reader(dest_f,
delimiter = delimiter,
quotechar = '"')
data = [data for data in data_iter]
data_array = np.asarray(data, dtype = <whatever options>)
on 4.6 million rows with about 70 columns and found that the NumPy path took 2 min 16 secs and the csv-list comprehension method took 13 seconds.
I would recommend the csv-list comprehension method as it is most likely relies on pre-compiled libraries and not the interpreter as much as NumPy. I suspect the pandas method would have similar interpreter overhead.
回答 3
您也可以尝试使用recfromcsv()
哪种方法可以猜测数据类型并返回格式正确的记录数组。
You can also try recfromcsv()
which can guess data types and return a properly formatted record array.
回答 4
当我尝试使用NumPy和Pandas两种方式时,使用Pandas有很多优点:
- 快点
- 减少CPU使用率
- 与NumPy genfromtxt相比1/3的RAM使用量
这是我的测试代码:
$ for f in test_pandas.py test_numpy_csv.py ; do /usr/bin/time python $f; done
2.94user 0.41system 0:03.05elapsed 109%CPU (0avgtext+0avgdata 502068maxresident)k
0inputs+24outputs (0major+107147minor)pagefaults 0swaps
23.29user 0.72system 0:23.72elapsed 101%CPU (0avgtext+0avgdata 1680888maxresident)k
0inputs+0outputs (0major+416145minor)pagefaults 0swaps
test_numpy_csv.py
from numpy import genfromtxt
train = genfromtxt('/home/hvn/me/notebook/train.csv', delimiter=',')
test_pandas.py
from pandas import read_csv
df = read_csv('/home/hvn/me/notebook/train.csv')
资料档案:
du -h ~/me/notebook/train.csv
59M /home/hvn/me/notebook/train.csv
使用NumPy和pandas版本:
$ pip freeze | egrep -i 'pandas|numpy'
numpy==1.13.3
pandas==0.20.2
As I tried both ways using NumPy and Pandas, using pandas has a lot of advantages:
- Faster
- Less CPU usage
- 1/3 RAM usage compared to NumPy genfromtxt
This is my test code:
$ for f in test_pandas.py test_numpy_csv.py ; do /usr/bin/time python $f; done
2.94user 0.41system 0:03.05elapsed 109%CPU (0avgtext+0avgdata 502068maxresident)k
0inputs+24outputs (0major+107147minor)pagefaults 0swaps
23.29user 0.72system 0:23.72elapsed 101%CPU (0avgtext+0avgdata 1680888maxresident)k
0inputs+0outputs (0major+416145minor)pagefaults 0swaps
test_numpy_csv.py
from numpy import genfromtxt
train = genfromtxt('/home/hvn/me/notebook/train.csv', delimiter=',')
test_pandas.py
from pandas import read_csv
df = read_csv('/home/hvn/me/notebook/train.csv')
Data file:
du -h ~/me/notebook/train.csv
59M /home/hvn/me/notebook/train.csv
With NumPy and pandas at versions:
$ pip freeze | egrep -i 'pandas|numpy'
numpy==1.13.3
pandas==0.20.2
回答 5
您可以使用以下代码将CSV文件数据发送到数组中:
import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)
You can use this code to send CSV file data into an array:
import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)
回答 6
使用 numpy.loadtxt
一个非常简单的方法。但这要求所有元素都是浮点数(int等)
import numpy as np
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)
Using numpy.loadtxt
A quite simple method. But it requires all the elements being float (int and so on)
import numpy as np
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)
回答 7
这是最简单的方法:
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
现在,数据中的每个条目都是一条记录,表示为一个数组。因此,您拥有一个2D阵列。它节省了我很多时间。
This is the easiest way:
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
Now each entry in data is a record, represented as an array. So you have a 2D array. It saved me so much time.
回答 8
我尝试了这个:
import pandas as p
import numpy as n
closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)
I tried this:
import pandas as p
import numpy as n
closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)
回答 9
我建议使用表格(pip3 install tables
)。您可以将.csv
文件保存为.h5
使用熊猫(pip3 install pandas
),
import pandas as pd
data = pd.read_csv("dataset.csv")
store = pd.HDFStore('dataset.h5')
store['mydata'] = data
store.close()
然后,您可以轻松地以较少的时间(即使是处理大量数据)将数据加载到NumPy数组中。
import pandas as pd
store = pd.HDFStore('dataset.h5')
data = store['mydata']
store.close()
# Data in NumPy format
data = data.values
I would suggest using tables (pip3 install tables
). You can save your .csv
file to .h5
using pandas (pip3 install pandas
),
import pandas as pd
data = pd.read_csv("dataset.csv")
store = pd.HDFStore('dataset.h5')
store['mydata'] = data
store.close()
You can then easily, and with less time even for huge amount of data, load your data in a NumPy array.
import pandas as pd
store = pd.HDFStore('dataset.h5')
data = store['mydata']
store.close()
# Data in NumPy format
data = data.values
回答 10
这项工作令人着迷…
import csv
with open("data.csv", 'r') as f:
data = list(csv.reader(f, delimiter=";"))
import numpy as np
data = np.array(data, dtype=np.float)
This work as a charm…
import csv
with open("data.csv", 'r') as f:
data = list(csv.reader(f, delimiter=";"))
import numpy as np
data = np.array(data, dtype=np.float)