问题:我如何获得执行Python程序的时间?

我在Python中有一个命令行程序,需要花一些时间才能完成。我想知道完成跑步所需的确切时间。

我看过该timeit模块,但似乎仅适用于少量代码段。我想安排整个节目的时间。

I have a command line program in Python that takes a while to finish. I want to know the exact time it takes to finish running.

I’ve looked at the timeit module, but it seems it’s only for small snippets of code. I want to time the whole program.


回答 0

Python中最简单的方法:

import time
start_time = time.time()
main()
print("--- %s seconds ---" % (time.time() - start_time))

假设您的程序至少需要十分之一秒才能运行。

印刷品:

--- 0.764891862869 seconds ---

The simplest way in Python:

import time
start_time = time.time()
main()
print("--- %s seconds ---" % (time.time() - start_time))

This assumes that your program takes at least a tenth of second to run.

Prints:

--- 0.764891862869 seconds ---

回答 1

我将此timing.py模块放入自己的site-packages目录中,然后将其插入import timing模块顶部:

import atexit
from time import clock

def secondsToStr(t):
    return "%d:%02d:%02d.%03d" % \
        reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],
            [(t*1000,),1000,60,60])

line = "="*40
def log(s, elapsed=None):
    print line
    print secondsToStr(clock()), '-', s
    if elapsed:
        print "Elapsed time:", elapsed
    print line
    print

def endlog():
    end = clock()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

def now():
    return secondsToStr(clock())

start = clock()
atexit.register(endlog)
log("Start Program")

timing.log如果要显示的程序中有重要的阶段,我也可以从程序中调用。但仅包括即可import timing打印开始时间和结束时间以及总体经过时间。(请原谅我晦涩的secondsToStr功能,它只是将秒的浮点数格式设置为hh:mm:ss.sss形式。)

注意:以上代码的Python 3版本可以在此处此处找到。

I put this timing.py module into my own site-packages directory, and just insert import timing at the top of my module:

import atexit
from time import clock

def secondsToStr(t):
    return "%d:%02d:%02d.%03d" % \
        reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],
            [(t*1000,),1000,60,60])

line = "="*40
def log(s, elapsed=None):
    print line
    print secondsToStr(clock()), '-', s
    if elapsed:
        print "Elapsed time:", elapsed
    print line
    print

def endlog():
    end = clock()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

def now():
    return secondsToStr(clock())

start = clock()
atexit.register(endlog)
log("Start Program")

I can also call timing.log from within my program if there are significant stages within the program I want to show. But just including import timing will print the start and end times, and overall elapsed time. (Forgive my obscure secondsToStr function, it just formats a floating point number of seconds to hh:mm:ss.sss form.)

Note: A Python 3 version of the above code can be found here or here.


回答 2

在Linux或Unix中:

$ time python yourprogram.py

在Windows中,请参见以下StackOverflow问题: 如何在Windows命令行上测量命令的执行时间?

要获得更详细的输出,

$ time -v python yourprogram.py
    Command being timed: "python3 yourprogram.py"
    User time (seconds): 0.08
    System time (seconds): 0.02
    Percent of CPU this job got: 98%
    Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.10
    Average shared text size (kbytes): 0
    Average unshared data size (kbytes): 0
    Average stack size (kbytes): 0
    Average total size (kbytes): 0
    Maximum resident set size (kbytes): 9480
    Average resident set size (kbytes): 0
    Major (requiring I/O) page faults: 0
    Minor (reclaiming a frame) page faults: 1114
    Voluntary context switches: 0
    Involuntary context switches: 22
    Swaps: 0
    File system inputs: 0
    File system outputs: 0
    Socket messages sent: 0
    Socket messages received: 0
    Signals delivered: 0
    Page size (bytes): 4096
    Exit status: 0

In Linux or Unix:

$ time python yourprogram.py

In Windows, see this StackOverflow question: How do I measure execution time of a command on the Windows command line?

For more verbose output,

$ time -v python yourprogram.py
    Command being timed: "python3 yourprogram.py"
    User time (seconds): 0.08
    System time (seconds): 0.02
    Percent of CPU this job got: 98%
    Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.10
    Average shared text size (kbytes): 0
    Average unshared data size (kbytes): 0
    Average stack size (kbytes): 0
    Average total size (kbytes): 0
    Maximum resident set size (kbytes): 9480
    Average resident set size (kbytes): 0
    Major (requiring I/O) page faults: 0
    Minor (reclaiming a frame) page faults: 1114
    Voluntary context switches: 0
    Involuntary context switches: 22
    Swaps: 0
    File system inputs: 0
    File system outputs: 0
    Socket messages sent: 0
    Socket messages received: 0
    Signals delivered: 0
    Page size (bytes): 4096
    Exit status: 0

回答 3

我真的很喜欢Paul McGuire的答案,但是我使用Python3。因此,对于那些感兴趣的人:这是他的答案的一种修改,可用于* nix上的Python 3(我想在Windows下,clock()应该使用代替time()):

#python3
import atexit
from time import time, strftime, localtime
from datetime import timedelta

def secondsToStr(elapsed=None):
    if elapsed is None:
        return strftime("%Y-%m-%d %H:%M:%S", localtime())
    else:
        return str(timedelta(seconds=elapsed))

def log(s, elapsed=None):
    line = "="*40
    print(line)
    print(secondsToStr(), '-', s)
    if elapsed:
        print("Elapsed time:", elapsed)
    print(line)
    print()

def endlog():
    end = time()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

start = time()
atexit.register(endlog)
log("Start Program")

如果您认为此方法有用,则仍应投票赞成他的答案,而不是像他所做的大部分工作一样;)。

I really like Paul McGuire’s answer, but I use Python 3. So for those who are interested: here’s a modification of his answer that works with Python 3 on *nix (I imagine, under Windows, that clock() should be used instead of time()):

#python3
import atexit
from time import time, strftime, localtime
from datetime import timedelta

def secondsToStr(elapsed=None):
    if elapsed is None:
        return strftime("%Y-%m-%d %H:%M:%S", localtime())
    else:
        return str(timedelta(seconds=elapsed))

def log(s, elapsed=None):
    line = "="*40
    print(line)
    print(secondsToStr(), '-', s)
    if elapsed:
        print("Elapsed time:", elapsed)
    print(line)
    print()

def endlog():
    end = time()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

start = time()
atexit.register(endlog)
log("Start Program")

If you find this useful, you should still up-vote his answer instead of this one, as he did most of the work ;).


回答 4

import time

start_time = time.clock()
main()
print time.clock() - start_time, "seconds"

time.clock()返回处理器时间,这使我们只能计算该进程使用的时间(无论如何在Unix上)。该文档说“无论如何,这是用于基准化Python或计时算法的功能”

import time

start_time = time.clock()
main()
print time.clock() - start_time, "seconds"

time.clock() returns the processor time, which allows us to calculate only the time used by this process (on Unix anyway). The documentation says “in any case, this is the function to use for benchmarking Python or timing algorithms”


回答 5

我喜欢输出 datetime模块提供,其中时间增量对象根据需要以人类可读的方式显示天,小时,分钟等。

例如:

from datetime import datetime
start_time = datetime.now()
# do your work here
end_time = datetime.now()
print('Duration: {}'.format(end_time - start_time))

样品输出,例如

Duration: 0:00:08.309267

要么

Duration: 1 day, 1:51:24.269711

正如JF Sebastian提到的那样,这种方法在本地时间可能会遇到一些棘手的情况,因此使用起来更安全:

import time
from datetime import timedelta
start_time = time.monotonic()
end_time = time.monotonic()
print(timedelta(seconds=end_time - start_time))

I like the output the datetime module provides, where time delta objects show days, hours, minutes, etc. as necessary in a human-readable way.

For example:

from datetime import datetime
start_time = datetime.now()
# do your work here
end_time = datetime.now()
print('Duration: {}'.format(end_time - start_time))

Sample output e.g.

Duration: 0:00:08.309267

or

Duration: 1 day, 1:51:24.269711

As J.F. Sebastian mentioned, this approach might encounter some tricky cases with local time, so it’s safer to use:

import time
from datetime import timedelta
start_time = time.monotonic()
end_time = time.monotonic()
print(timedelta(seconds=end_time - start_time))

回答 6

您可以使用Python探查器cProfile来测量CPU时间,还可以测量每个函数内部花费了多少时间以及每个函数被调用了多少次。如果您想在不知道从哪里开始的情况下提高脚本性能,这将非常有用。另一个Stack Overflow问题的答案非常好。看看文档总是很高兴也。

这是一个示例,如何从命令行使用cProfile来分析脚本:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

You can use the Python profiler cProfile to measure CPU time and additionally how much time is spent inside each function and how many times each function is called. This is very useful if you want to improve performance of your script without knowing where to start. This answer to another Stack Overflow question is pretty good. It’s always good to have a look in the documentation too.

Here’s an example how to profile a script using cProfile from a command line:

$ python -m cProfile euler048.py

1007 function calls in 0.061 CPU seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    1    0.000    0.000    0.061    0.061 <string>:1(<module>)
 1000    0.051    0.000    0.051    0.000 euler048.py:2(<lambda>)
    1    0.005    0.005    0.061    0.061 euler048.py:2(<module>)
    1    0.000    0.000    0.061    0.061 {execfile}
    1    0.002    0.002    0.053    0.053 {map}
    1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler objects}
    1    0.000    0.000    0.000    0.000 {range}
    1    0.003    0.003    0.003    0.003 {sum}

回答 7

对于Linux甚至更好: time

$ time -v python rhtest2.py

    Command being timed: "python rhtest2.py"
    User time (seconds): 4.13
    System time (seconds): 0.07
    Percent of CPU this job got: 91%
    Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.58
    Average shared text size (kbytes): 0
    Average unshared data size (kbytes): 0
    Average stack size (kbytes): 0
    Average total size (kbytes): 0
    Maximum resident set size (kbytes): 0
    Average resident set size (kbytes): 0
    Major (requiring I/O) page faults: 15
    Minor (reclaiming a frame) page faults: 5095
    Voluntary context switches: 27
    Involuntary context switches: 279
    Swaps: 0
    File system inputs: 0
    File system outputs: 0
    Socket messages sent: 0
    Socket messages received: 0
    Signals delivered: 0
    Page size (bytes): 4096
    Exit status: 0

Even better for Linux: time

$ time -v python rhtest2.py

    Command being timed: "python rhtest2.py"
    User time (seconds): 4.13
    System time (seconds): 0.07
    Percent of CPU this job got: 91%
    Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.58
    Average shared text size (kbytes): 0
    Average unshared data size (kbytes): 0
    Average stack size (kbytes): 0
    Average total size (kbytes): 0
    Maximum resident set size (kbytes): 0
    Average resident set size (kbytes): 0
    Major (requiring I/O) page faults: 15
    Minor (reclaiming a frame) page faults: 5095
    Voluntary context switches: 27
    Involuntary context switches: 279
    Swaps: 0
    File system inputs: 0
    File system outputs: 0
    Socket messages sent: 0
    Socket messages received: 0
    Signals delivered: 0
    Page size (bytes): 4096
    Exit status: 0

回答 8

time.clock()

从版本3.3开始不推荐使用:此功能的行为取决于平台:根据您的要求,使用perf_counter()process_time()来具有明确定义的行为。

time.perf_counter()

返回性能计数器的值(以小数秒为单位),即具有最高可用分辨率的时钟以测量较短的持续时间。它的确包含整个系统的睡眠时间。

time.process_time()

返回当前进程的系统和用户CPU时间之和的值(以秒为单位)。它包括睡眠期间经过的时间。

start = time.process_time()
... do something
elapsed = (time.process_time() - start)

time.clock()

Deprecated since version 3.3: The behavior of this function depends on the platform: use perf_counter() or process_time() instead, depending on your requirements, to have a well-defined behavior.

time.perf_counter()

Return the value (in fractional seconds) of a performance counter, i.e. a clock with the highest available resolution to measure a short duration. It does include time elapsed during sleep and is system-wide.

time.process_time()

Return the value (in fractional seconds) of the sum of the system and user CPU time of the current process. It does not include time elapsed during sleep.

start = time.process_time()
... do something
elapsed = (time.process_time() - start)

回答 9

只需使用该timeit模块。它同时适用于Python 2和Python 3。

import timeit

start = timeit.default_timer()

# All the program statements
stop = timeit.default_timer()
execution_time = stop - start

print("Program Executed in "+str(execution_time)) # It returns time in seconds

它以秒为单位返回,您可以拥有执行时间。很简单,但是您应该将它们写在开始程序执行的主函数中。如果即使在遇到错误时也想获得执行时间,则将参数“开始”添加到该位置并进行计算,例如:

def sample_function(start,**kwargs):
     try:
         # Your statements
     except:
         # except statements run when your statements raise an exception
         stop = timeit.default_timer()
         execution_time = stop - start
         print("Program executed in " + str(execution_time))

Just use the timeit module. It works with both Python 2 and Python 3.

import timeit

start = timeit.default_timer()

# All the program statements
stop = timeit.default_timer()
execution_time = stop - start

print("Program Executed in "+str(execution_time)) # It returns time in seconds

It returns in seconds and you can have your execution time. It is simple, but you should write these in thew main function which starts program execution. If you want to get the execution time even when you get an error then take your parameter “Start” to it and calculate there like:

def sample_function(start,**kwargs):
     try:
         # Your statements
     except:
         # except statements run when your statements raise an exception
         stop = timeit.default_timer()
         execution_time = stop - start
         print("Program executed in " + str(execution_time))

回答 10

以下代码段以一种易于阅读的<HH:MM:SS>格式打印经过的时间。

import time
from datetime import timedelta

start_time = time.time()

#
# Perform lots of computations.
#

elapsed_time_secs = time.time() - start_time

msg = "Execution took: %s secs (Wall clock time)" % timedelta(seconds=round(elapsed_time_secs))

print(msg)    

The following snippet prints elapsed time in a nice human readable <HH:MM:SS> format.

import time
from datetime import timedelta

start_time = time.time()

#
# Perform lots of computations.
#

elapsed_time_secs = time.time() - start_time

msg = "Execution took: %s secs (Wall clock time)" % timedelta(seconds=round(elapsed_time_secs))

print(msg)    

回答 11

from time import time
start_time = time()
...
end_time = time()
time_taken = end_time - start_time # time_taken is in seconds
hours, rest = divmod(time_taken,3600)
minutes, seconds = divmod(rest, 60)
from time import time
start_time = time()
...
end_time = time()
time_taken = end_time - start_time # time_taken is in seconds
hours, rest = divmod(time_taken,3600)
minutes, seconds = divmod(rest, 60)

回答 12

IPython中,“ timeit”任何脚本:

def foo():
    %run bar.py
timeit foo()

In IPython, “timeit” any script:

def foo():
    %run bar.py
timeit foo()

回答 13

我已经看过timeit模块,但似乎只适用于小段代码。我想安排整个节目的时间。

$ python -mtimeit -n1 -r1 -t -s "from your_module import main" "main()"

它运行一次your_module.main()功能,并使用以下命令打印经过的时间time.time()功能作为计时器。

/usr/bin/time在Python中进行仿真,请参见带有/ usr / bin / time的Python子进程:如何捕获计时信息,但忽略所有其他输出?

要测量time.sleep()每个函数的CPU时间(例如,不包括中的时间),您可以使用profile模块(cProfile在Python 2上):

$ python3 -mprofile your_module.py

如果您想使用相同的计时器,则可以传递-ptimeit上面的命令profile模块使用的。

请参阅如何配置Python脚本?

I’ve looked at the timeit module, but it seems it’s only for small snippets of code. I want to time the whole program.

$ python -mtimeit -n1 -r1 -t -s "from your_module import main" "main()"

It runs your_module.main() function one time and print the elapsed time using time.time() function as a timer.

To emulate /usr/bin/time in Python see Python subprocess with /usr/bin/time: how to capture timing info but ignore all other output?.

To measure CPU time (e.g., don’t include time during time.sleep()) for each function, you could use profile module (cProfile on Python 2):

$ python3 -mprofile your_module.py

You could pass -p to timeit command above if you want to use the same timer as profile module uses.

See How can you profile a Python script?


回答 14

我也喜欢Paul McGuire的答案,并提出了一个更适合我需求的上下文管理器表格。

import datetime as dt
import timeit

class TimingManager(object):
    """Context Manager used with the statement 'with' to time some execution.

    Example:

    with TimingManager() as t:
       # Code to time
    """

    clock = timeit.default_timer

    def __enter__(self):
        """
        """
        self.start = self.clock()
        self.log('\n=> Start Timing: {}')

        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        """
        """
        self.endlog()

        return False

    def log(self, s, elapsed=None):
        """Log current time and elapsed time if present.
        :param s: Text to display, use '{}' to format the text with
            the current time.
        :param elapsed: Elapsed time to display. Dafault: None, no display.
        """
        print s.format(self._secondsToStr(self.clock()))

        if(elapsed is not None):
            print 'Elapsed time: {}\n'.format(elapsed)

    def endlog(self):
        """Log time for the end of execution with elapsed time.
        """
        self.log('=> End Timing: {}', self.now())

    def now(self):
        """Return current elapsed time as hh:mm:ss string.
        :return: String.
        """
        return str(dt.timedelta(seconds = self.clock() - self.start))

    def _secondsToStr(self, sec):
        """Convert timestamp to h:mm:ss string.
        :param sec: Timestamp.
        """
        return str(dt.datetime.fromtimestamp(sec))

I liked Paul McGuire’s answer too and came up with a context manager form which suited my needs more.

import datetime as dt
import timeit

class TimingManager(object):
    """Context Manager used with the statement 'with' to time some execution.

    Example:

    with TimingManager() as t:
       # Code to time
    """

    clock = timeit.default_timer

    def __enter__(self):
        """
        """
        self.start = self.clock()
        self.log('\n=> Start Timing: {}')

        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        """
        """
        self.endlog()

        return False

    def log(self, s, elapsed=None):
        """Log current time and elapsed time if present.
        :param s: Text to display, use '{}' to format the text with
            the current time.
        :param elapsed: Elapsed time to display. Dafault: None, no display.
        """
        print s.format(self._secondsToStr(self.clock()))

        if(elapsed is not None):
            print 'Elapsed time: {}\n'.format(elapsed)

    def endlog(self):
        """Log time for the end of execution with elapsed time.
        """
        self.log('=> End Timing: {}', self.now())

    def now(self):
        """Return current elapsed time as hh:mm:ss string.
        :return: String.
        """
        return str(dt.timedelta(seconds = self.clock() - self.start))

    def _secondsToStr(self, sec):
        """Convert timestamp to h:mm:ss string.
        :param sec: Timestamp.
        """
        return str(dt.datetime.fromtimestamp(sec))

回答 15

对于使用Jupyter Notebook的数据人员

在单元格中,可以使用Jupyter的%%timemagic命令来测量执行时间:

%%time
[ x**2 for x in range(10000)]

输出量

CPU times: user 4.54 ms, sys: 0 ns, total: 4.54 ms
Wall time: 4.12 ms

这只会捕获特定单元的执行时间。如果您想捕获整个笔记本(即程序)的执行时间,则可以在同一目录中创建一个新笔记本,然后在新笔记本中执行所有单元:

假设上面的笔记本名为example_notebook.ipynb。在同一目录中的新笔记本中:

# Convert your notebook to a .py script:
!jupyter nbconvert --to script example_notebook.ipynb

# Run the example_notebook with -t flag for time
%run -t example_notebook

输出量

IPython CPU timings (estimated):
  User   :       0.00 s.
  System :       0.00 s.
Wall time:       0.00 s.

For the data folks using Jupyter Notebook

In a cell, you can use Jupyter’s %%time magic command to measure the execution time:

%%time
[ x**2 for x in range(10000)]

Output

CPU times: user 4.54 ms, sys: 0 ns, total: 4.54 ms
Wall time: 4.12 ms

This will only capture the execution time of a particular cell. If you’d like to capture the execution time of the whole notebook (i.e. program), you can create a new notebook in the same directory and in the new notebook execute all cells:

Suppose the notebook above is called example_notebook.ipynb. In a new notebook within the same directory:

# Convert your notebook to a .py script:
!jupyter nbconvert --to script example_notebook.ipynb

# Run the example_notebook with -t flag for time
%run -t example_notebook

Output

IPython CPU timings (estimated):
  User   :       0.00 s.
  System :       0.00 s.
Wall time:       0.00 s.

回答 16

有一个timeit模块可用于计时Python代码的执行时间。

它在Python文档26.6中提供了详细的文档和示例timeit —测量小代码段的执行时间

There is a timeit module which can be used to time the execution times of Python code.

It has detailed documentation and examples in Python documentation, 26.6. timeit — Measure execution time of small code snippets.


回答 17

使用line_profiler

line_profiler将分析各个代码行执行所需的时间。剖析器通过Cython在C中实现,以减少分析的开销。

from line_profiler import LineProfiler
import random

def do_stuff(numbers):
    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

结果将是:

Timer unit: 1e-06 s

Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1           10     10.0      1.5      s = sum(numbers)
     6         1          186    186.0     28.7      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1          453    453.0     69.8      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

Use line_profiler.

line_profiler will profile the time individual lines of code take to execute. The profiler is implemented in C via Cython in order to reduce the overhead of profiling.

from line_profiler import LineProfiler
import random

def do_stuff(numbers):
    s = sum(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()

The results will be:

Timer unit: 1e-06 s

Total time: 0.000649 s
File: <ipython-input-2-2e060b054fea>
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1           10     10.0      1.5      s = sum(numbers)
     6         1          186    186.0     28.7      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1          453    453.0     69.8      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

回答 18

我使用了一个非常简单的函数来计时部分代码执行时间:

import time
def timing():
    start_time = time.time()
    return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))

要使用它,只需在代码之前调用它以进行测量以检索函数计时,然后在代码后调用带有注释的函数。时间将显示在评论的前面。例如:

t = timing()
train = pd.read_csv('train.csv',
                        dtype={
                            'id': str,
                            'vendor_id': str,
                            'pickup_datetime': str,
                            'dropoff_datetime': str,
                            'passenger_count': int,
                            'pickup_longitude': np.float64,
                            'pickup_latitude': np.float64,
                            'dropoff_longitude': np.float64,
                            'dropoff_latitude': np.float64,
                            'store_and_fwd_flag': str,
                            'trip_duration': int,
                        },
                        parse_dates = ['pickup_datetime', 'dropoff_datetime'],
                   )
t("Loaded {} rows data from 'train'".format(len(train)))

然后输出将如下所示:

[9.35s] Loaded 1458644 rows data from 'train'

I used a very simple function to time a part of code execution:

import time
def timing():
    start_time = time.time()
    return lambda x: print("[{:.2f}s] {}".format(time.time() - start_time, x))

And to use it, just call it before the code to measure to retrieve function timing, and then call the function after the code with comments. The time will appear in front of the comments. For example:

t = timing()
train = pd.read_csv('train.csv',
                        dtype={
                            'id': str,
                            'vendor_id': str,
                            'pickup_datetime': str,
                            'dropoff_datetime': str,
                            'passenger_count': int,
                            'pickup_longitude': np.float64,
                            'pickup_latitude': np.float64,
                            'dropoff_longitude': np.float64,
                            'dropoff_latitude': np.float64,
                            'store_and_fwd_flag': str,
                            'trip_duration': int,
                        },
                        parse_dates = ['pickup_datetime', 'dropoff_datetime'],
                   )
t("Loaded {} rows data from 'train'".format(len(train)))

Then the output will look like this:

[9.35s] Loaded 1458644 rows data from 'train'

回答 19

我在很多地方都遇到过同样的问题,所以我创建了一个便利包horology。您可以安装它,pip install horology然后以一种优雅的方式完成它:

from horology import Timing

with Timing(name='Important calculations: '):
    prepare()
    do_your_stuff()
    finish_sth()

将输出:

Important calculations: 12.43 ms

甚至更简单(如果您有一个功能):

from horology import timed

@timed
def main():
    ...

将输出:

main: 7.12 h

它照顾单位和舍入。它适用于python 3.6或更高版本。

I was having the same problem in many places, so I created a convenience package horology. You can install it with pip install horology and then do it in the elegant way:

from horology import Timing

with Timing(name='Important calculations: '):
    prepare()
    do_your_stuff()
    finish_sth()

will output:

Important calculations: 12.43 ms

Or even simpler (if you have one function):

from horology import timed

@timed
def main():
    ...

will output:

main: 7.12 h

It takes care of units and rounding. It works with python 3.6 or newer.


回答 20

这是Paul McGuire的答案,对我有用。以防万一有人在运行那个困难。

import atexit
from time import clock

def reduce(function, iterable, initializer=None):
    it = iter(iterable)
    if initializer is None:
        value = next(it)
    else:
        value = initializer
    for element in it:
        value = function(value, element)
    return value

def secondsToStr(t):
    return "%d:%02d:%02d.%03d" % \
        reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],
            [(t*1000,),1000,60,60])

line = "="*40
def log(s, elapsed=None):
    print (line)
    print (secondsToStr(clock()), '-', s)
    if elapsed:
        print ("Elapsed time:", elapsed)
    print (line)

def endlog():
    end = clock()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

def now():
    return secondsToStr(clock())

def main():
    start = clock()
    atexit.register(endlog)
    log("Start Program")

timing.main()导入文件后,从程序中调用。

This is Paul McGuire’s answer that works for me. Just in case someone was having trouble running that one.

import atexit
from time import clock

def reduce(function, iterable, initializer=None):
    it = iter(iterable)
    if initializer is None:
        value = next(it)
    else:
        value = initializer
    for element in it:
        value = function(value, element)
    return value

def secondsToStr(t):
    return "%d:%02d:%02d.%03d" % \
        reduce(lambda ll,b : divmod(ll[0],b) + ll[1:],
            [(t*1000,),1000,60,60])

line = "="*40
def log(s, elapsed=None):
    print (line)
    print (secondsToStr(clock()), '-', s)
    if elapsed:
        print ("Elapsed time:", elapsed)
    print (line)

def endlog():
    end = clock()
    elapsed = end-start
    log("End Program", secondsToStr(elapsed))

def now():
    return secondsToStr(clock())

def main():
    start = clock()
    atexit.register(endlog)
    log("Start Program")

Call timing.main() from your program after importing the file.


回答 21

Timeit是Python中的一个类,用于计算小代码块的执行时间。

Default_timer是此类中的一种方法,用于测量挂钟计时,而不是CPU执行时间。因此,其他进程执行可能会对此产生干扰。因此,这对于较小的代码块很有用。

代码示例如下:

from timeit import default_timer as timer

start= timer()

# Some logic

end = timer()

print("Time taken:", end-start)

Timeit is a class in Python used to calculate the execution time of small blocks of code.

Default_timer is a method in this class which is used to measure the wall clock timing, not CPU execution time. Thus other process execution might interfere with this. Thus it is useful for small blocks of code.

A sample of the code is as follows:

from timeit import default_timer as timer

start= timer()

# Some logic

end = timer()

print("Time taken:", end-start)

回答 22

稍后的答案,但我使用timeit

import timeit
code_to_test = """
a = range(100000)
b = []
for i in a:
    b.append(i*2)
"""
elapsed_time = timeit.timeit(code_to_test, number=500)
print(elapsed_time)
# 10.159821493085474

  • 在内包装所有代码,包括您可能拥有的任何导入code_to_test
  • number 参数指定代码应重复的次数。
  • 演示版

Later answer, but I use timeit:

import timeit
code_to_test = """
a = range(100000)
b = []
for i in a:
    b.append(i*2)
"""
elapsed_time = timeit.timeit(code_to_test, number=500)
print(elapsed_time)
# 10.159821493085474

  • Wrap all your code, including any imports you may have, inside code_to_test.
  • number argument specifies the amount of times the code should repeat.
  • Demo

回答 23

Python程序执行时间的时间可能不一致,具体取决于:

  • 可以使用不同的算法评估同一程序
  • 运行时间因算法而异
  • 运行时间因实现而异
  • 运行时间因计算机而异
  • 基于少量输入,运行时间是不可预测的

这是因为最有效的方法是使用“增长顺序”并学习“ O”表示法来正确执行。

无论如何,您可以尝试使用以下简单算法以特定的机器每秒计数步骤来评估任何Python程序的性能: 使其适应您要评估的程序

import time

now = time.time()
future = now + 10
step = 4 # Why 4 steps? Because until here already four operations executed
while time.time() < future:
    step += 3 # Why 3 again? Because a while loop executes one comparison and one plus equal statement
step += 4 # Why 3 more? Because one comparison starting while when time is over plus the final assignment of step + 1 and print statement
print(str(int(step / 10)) + " steps per second")

The time of a Python program’s execution measure could be inconsistent depending on:

  • Same program can be evaluated using different algorithms
  • Running time varies between algorithms
  • Running time varies between implementations
  • Running time varies between computers
  • Running time is not predictable based on small inputs

This is because the most effective way is using the “Order of Growth” and learn the Big “O” notation to do it properly.

Anyway, you can try to evaluate the performance of any Python program in specific machine counting steps per second using this simple algorithm: adapt this to the program you want to evaluate

import time

now = time.time()
future = now + 10
step = 4 # Why 4 steps? Because until here already four operations executed
while time.time() < future:
    step += 3 # Why 3 again? Because a while loop executes one comparison and one plus equal statement
step += 4 # Why 3 more? Because one comparison starting while when time is over plus the final assignment of step + 1 and print statement
print(str(int(step / 10)) + " steps per second")

回答 24

您只需在Python中执行此操作即可。无需使其变得复杂。

import time

start = time.localtime()
end = time.localtime()
"""Total execution time in seconds$ """
print(end.tm_sec - start.tm_sec)

You do this simply in Python. There is no need to make it complicated.

import time

start = time.localtime()
end = time.localtime()
"""Total execution time in seconds$ """
print(end.tm_sec - start.tm_sec)

回答 25

与@rogeriopvl的响应类似,我添加了一点修改,以使用相同的库将长时间运行的作业转换为时分秒。

import time
start_time = time.time()
main()
seconds = time.time() - start_time
print('Time Taken:', time.strftime("%H:%M:%S",time.gmtime(seconds)))

样本输出

Time Taken: 00:00:08

Similar to the response from @rogeriopvl I added a slight modification to convert to hour minute seconds using the same library for long running jobs.

import time
start_time = time.time()
main()
seconds = time.time() - start_time
print('Time Taken:', time.strftime("%H:%M:%S",time.gmtime(seconds)))

Sample Output

Time Taken: 00:00:08

回答 26

首先,通过以管理员身份打开命令提示符(CMD)并在其中键入命令,以安装对人类友好的软件包- pip install humanfriendly

码:

from humanfriendly import format_timespan
import time
begin_time = time.time()
# Put your code here
end_time = time.time() - begin_time
print("Total execution time: ", format_timespan(end_time))

输出:

在此处输入图片说明

First, install humanfriendly package by opening Command Prompt (CMD) as administrator and type there – pip install humanfriendly

Code:

from humanfriendly import format_timespan
import time
begin_time = time.time()
# Put your code here
end_time = time.time() - begin_time
print("Total execution time: ", format_timespan(end_time))

Output:

enter image description here


回答 27

要使用metakermit更新的Python 2.7 答案,您将需要单调包。

代码如下:

from datetime import timedelta
from monotonic import monotonic

start_time = monotonic()
end_time = monotonic()
print(timedelta(seconds=end_time - start_time))

To use metakermit’s updated answer for Python 2.7, you will require the monotonic package.

The code would then be as follows:

from datetime import timedelta
from monotonic import monotonic

start_time = monotonic()
end_time = monotonic()
print(timedelta(seconds=end_time - start_time))

回答 28

我尝试使用以下脚本找到时差。

import time

start_time = time.perf_counter()
[main code here]
print (time.perf_counter() - start_time, "seconds")

I tried and found time difference using the following scripts.

import time

start_time = time.perf_counter()
[main code here]
print (time.perf_counter() - start_time, "seconds")

回答 29

如果要以微秒为单位测量时间,则可以使用以下版本,完全基于Paul McGuireNicojo的回答-这是Python 3代码。我还添加了一些颜色:

import atexit
from time import time
from datetime import timedelta, datetime


def seconds_to_str(elapsed=None):
    if elapsed is None:
        return datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
    else:
        return str(timedelta(seconds=elapsed))


def log(txt, elapsed=None):
    colour_cyan = '\033[36m'
    colour_reset = '\033[0;0;39m'
    colour_red = '\033[31m'
    print('\n ' + colour_cyan + '  [TIMING]> [' + seconds_to_str() + '] ----> ' + txt + '\n' + colour_reset)
    if elapsed:
        print("\n " + colour_red + " [TIMING]> Elapsed time ==> " + elapsed + "\n" + colour_reset)


def end_log():
    end = time()
    elapsed = end-start
    log("End Program", seconds_to_str(elapsed))


start = time()
atexit.register(end_log)
log("Start Program")

log()=>函数,输出定时信息。

txt ==>要记录的第一个参数,以及用来标记时间的字符串。

atexit ==> Python模块,用于注册程序退出时可以调用的函数。

If you want to measure time in microseconds, then you can use the following version, based completely on the answers of Paul McGuire and Nicojo – it’s Python 3 code. I’ve also added some colour to it:

import atexit
from time import time
from datetime import timedelta, datetime


def seconds_to_str(elapsed=None):
    if elapsed is None:
        return datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
    else:
        return str(timedelta(seconds=elapsed))


def log(txt, elapsed=None):
    colour_cyan = '\033[36m'
    colour_reset = '\033[0;0;39m'
    colour_red = '\033[31m'
    print('\n ' + colour_cyan + '  [TIMING]> [' + seconds_to_str() + '] ----> ' + txt + '\n' + colour_reset)
    if elapsed:
        print("\n " + colour_red + " [TIMING]> Elapsed time ==> " + elapsed + "\n" + colour_reset)


def end_log():
    end = time()
    elapsed = end-start
    log("End Program", seconds_to_str(elapsed))


start = time()
atexit.register(end_log)
log("Start Program")

log() => function that prints out the timing information.

txt ==> first argument to log, and its string to mark timing.

atexit ==> Python module to register functions that you can call when the program exits.


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。