问题:是否有NumPy函数返回数组中某物的第一个索引?
我知道有一种方法可以让Python列表返回某些内容的第一个索引:
>>> l = [1, 2, 3]
>>> l.index(2)
1
NumPy数组有类似的东西吗?
I know there is a method for a Python list to return the first index of something:
>>> l = [1, 2, 3]
>>> l.index(2)
1
Is there something like that for NumPy arrays?
回答 0
是的,这是给定NumPy数组array
和值的答案item
,以搜索:
itemindex = numpy.where(array==item)
结果是具有所有行索引,然后是所有列索引的元组。
例如,如果一个数组是二维的,并且它在两个位置包含您的商品,则
array[itemindex[0][0]][itemindex[1][0]]
将等于您的物品,所以
array[itemindex[0][1]][itemindex[1][1]]
numpy.where
Yes, here is the answer given a NumPy array, array
, and a value, item
, to search for:
itemindex = numpy.where(array==item)
The result is a tuple with first all the row indices, then all the column indices.
For example, if an array is two dimensions and it contained your item at two locations then
array[itemindex[0][0]][itemindex[1][0]]
would be equal to your item and so would
array[itemindex[0][1]][itemindex[1][1]]
numpy.where
回答 1
如果仅需要一个值的第一次出现的索引,则可以使用nonzero
(或where
,在这种情况下,这等于同一件事):
>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6
如果您需要每个值的第一个索引,显然可以重复执行与上述相同的操作,但是有一个技巧可能会更快。以下是每个子序列的第一个元素的索引:
>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)
请注意,它找到了3s的两个子序列和8s的两个子序列的开头:
[ 1,1,1,2,2,3,8,3,8,8]
因此,它与找到每个值的第一个匹配项略有不同。在您的程序中,您可以使用的排序版本t
来获得所需的内容:
>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)
If you need the index of the first occurrence of only one value, you can use nonzero
(or where
, which amounts to the same thing in this case):
>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6
If you need the first index of each of many values, you could obviously do the same as above repeatedly, but there is a trick that may be faster. The following finds the indices of the first element of each subsequence:
>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)
Notice that it finds the beginning of both subsequence of 3s and both subsequences of 8s:
[1, 1, 1, 2, 2, 3, 8, 3, 8, 8]
So it’s slightly different than finding the first occurrence of each value. In your program, you may be able to work with a sorted version of t
to get what you want:
>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)
回答 2
您还可以将NumPy数组转换为空中列表并获取其索引。例如,
l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i
它将打印1。
You can also convert a NumPy array to list in the air and get its index. For example,
l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i
It will print 1.
回答 3
只是添加了一个非常高性能和方便 麻巴替代基于np.ndenumerate
查找第一个索引:
from numba import njit
import numpy as np
@njit
def index(array, item):
for idx, val in np.ndenumerate(array):
if val == item:
return idx
# If no item was found return None, other return types might be a problem due to
# numbas type inference.
这非常快,并且自然可以处理多维数组:
>>> arr1 = np.ones((100, 100, 100))
>>> arr1[2, 2, 2] = 2
>>> index(arr1, 2)
(2, 2, 2)
>>> arr2 = np.ones(20)
>>> arr2[5] = 2
>>> index(arr2, 2)
(5,)
这可能比使用或的任何方法都要快得多(因为这会使操作短路)。np.where
np.nonzero
但是np.argwhere
也可以处理优雅与多维数组(您需要手动将它转换到一个元组和它不是短路),但如果没有找到匹配它会失败:
>>> tuple(np.argwhere(arr1 == 2)[0])
(2, 2, 2)
>>> tuple(np.argwhere(arr2 == 2)[0])
(5,)
Just to add a very performant and handy numba alternative based on np.ndenumerate
to find the first index:
from numba import njit
import numpy as np
@njit
def index(array, item):
for idx, val in np.ndenumerate(array):
if val == item:
return idx
# If no item was found return None, other return types might be a problem due to
# numbas type inference.
This is pretty fast and deals naturally with multidimensional arrays:
>>> arr1 = np.ones((100, 100, 100))
>>> arr1[2, 2, 2] = 2
>>> index(arr1, 2)
(2, 2, 2)
>>> arr2 = np.ones(20)
>>> arr2[5] = 2
>>> index(arr2, 2)
(5,)
This can be much faster (because it’s short-circuiting the operation) than any approach using np.where
or np.nonzero
.
However np.argwhere
could also deal gracefully with multidimensional arrays (you would need to manually cast it to a tuple and it’s not short-circuited) but it would fail if no match is found:
>>> tuple(np.argwhere(arr1 == 2)[0])
(2, 2, 2)
>>> tuple(np.argwhere(arr2 == 2)[0])
(5,)
回答 4
如果要将其用作其他内容的索引,则可以使用布尔索引(如果数组可广播);您不需要显式索引。做到这一点的最简单的绝对方法是根据真值简单地建立索引。
other_array[first_array == item]
任何布尔运算均可:
a = numpy.arange(100)
other_array[first_array > 50]
非零方法也需要布尔值:
index = numpy.nonzero(first_array == item)[0][0]
两个零用于索引的元组(假设first_array为1D),然后是索引数组中的第一项。
If you’re going to use this as an index into something else, you can use boolean indices if the arrays are broadcastable; you don’t need explicit indices. The absolute simplest way to do this is to simply index based on a truth value.
other_array[first_array == item]
Any boolean operation works:
a = numpy.arange(100)
other_array[first_array > 50]
The nonzero method takes booleans, too:
index = numpy.nonzero(first_array == item)[0][0]
The two zeros are for the tuple of indices (assuming first_array is 1D) and then the first item in the array of indices.
回答 5
l.index(x)
返回最小的i,使i是列表中x首次出现的索引。
可以放心地假定index()
Python 中的函数已实现,以便在找到第一个匹配项后停止,从而获得最佳的平均性能。
为了找到在NumPy数组中的第一个匹配项之后停止的元素,请使用迭代器(ndenumerate)。
In [67]: l=range(100)
In [68]: l.index(2)
Out[68]: 2
NumPy数组:
In [69]: a = np.arange(100)
In [70]: next((idx for idx, val in np.ndenumerate(a) if val==2))
Out[70]: (2L,)
请注意,这两种方法index()
,并next
在未找到该元素,返回一个错误。使用next
,可以在找不到元素的情况下使用第二个参数返回一个特殊值,例如
In [77]: next((idx for idx, val in np.ndenumerate(a) if val==400),None)
NumPy(argmax
,where
和nonzero
)中还有其他函数可用于查找数组中的元素,但是它们都有缺点,即遍历整个数组以查找所有出现的元素,因此没有为查找第一个元素而进行优化。还需要注意的是where
,并nonzero
返回数组,所以你需要选择得到索引的第一个元素。
In [71]: np.argmax(a==2)
Out[71]: 2
In [72]: np.where(a==2)
Out[72]: (array([2], dtype=int64),)
In [73]: np.nonzero(a==2)
Out[73]: (array([2], dtype=int64),)
时间比较
当搜索的项位于数组的开头(%timeit
在IPython shell中使用)时,仅检查大型数组的解决方案使用迭代器的解决方案会更快:
In [285]: a = np.arange(100000)
In [286]: %timeit next((idx for idx, val in np.ndenumerate(a) if val==0))
100000 loops, best of 3: 17.6 µs per loop
In [287]: %timeit np.argmax(a==0)
1000 loops, best of 3: 254 µs per loop
In [288]: %timeit np.where(a==0)[0][0]
1000 loops, best of 3: 314 µs per loop
这是NumPy GitHub的未解决问题。
另请参阅:Numpy:快速找到价值的第一个索引
l.index(x)
returns the smallest i such that i is the index of the first occurrence of x in the list.
One can safely assume that the index()
function in Python is implemented so that it stops after finding the first match, and this results in an optimal average performance.
For finding an element stopping after the first match in a NumPy array use an iterator (ndenumerate).
In [67]: l=range(100)
In [68]: l.index(2)
Out[68]: 2
NumPy array:
In [69]: a = np.arange(100)
In [70]: next((idx for idx, val in np.ndenumerate(a) if val==2))
Out[70]: (2L,)
Note that both methods index()
and next
return an error if the element is not found. With next
, one can use a second argument to return a special value in case the element is not found, e.g.
In [77]: next((idx for idx, val in np.ndenumerate(a) if val==400),None)
There are other functions in NumPy (argmax
, where
, and nonzero
) that can be used to find an element in an array, but they all have the drawback of going through the whole array looking for all occurrences, thus not being optimized for finding the first element. Note also that where
and nonzero
return arrays, so you need to select the first element to get the index.
In [71]: np.argmax(a==2)
Out[71]: 2
In [72]: np.where(a==2)
Out[72]: (array([2], dtype=int64),)
In [73]: np.nonzero(a==2)
Out[73]: (array([2], dtype=int64),)
Time comparison
Just checking that for large arrays the solution using an iterator is faster when the searched item is at the beginning of the array (using %timeit
in the IPython shell):
In [285]: a = np.arange(100000)
In [286]: %timeit next((idx for idx, val in np.ndenumerate(a) if val==0))
100000 loops, best of 3: 17.6 µs per loop
In [287]: %timeit np.argmax(a==0)
1000 loops, best of 3: 254 µs per loop
In [288]: %timeit np.where(a==0)[0][0]
1000 loops, best of 3: 314 µs per loop
This is an open NumPy GitHub issue.
See also: Numpy: find first index of value fast
回答 6
对于一维排序数组,使用numpy.searchsorted返回NumPy整数(位置)会更加简单有效。例如,
arr = np.array([1, 1, 1, 2, 3, 3, 4])
i = np.searchsorted(arr, 3)
只要确保数组已经排序
还要检查返回的索引i是否实际上包含被搜索的元素,因为searchsorted的主要目的是查找应该在其中插入元素以保持顺序的索引。
if arr[i] == 3:
print("present")
else:
print("not present")
For one-dimensional sorted arrays, it would be much more simpler and efficient O(log(n)) to use numpy.searchsorted which returns a NumPy integer (position). For example,
arr = np.array([1, 1, 1, 2, 3, 3, 4])
i = np.searchsorted(arr, 3)
Just make sure the array is already sorted
Also check if returned index i actually contains the searched element, since searchsorted’s main objective is to find indices where elements should be inserted to maintain order.
if arr[i] == 3:
print("present")
else:
print("not present")
回答 7
要根据任何条件建立索引,可以执行以下操作:
In [1]: from numpy import *
In [2]: x = arange(125).reshape((5,5,5))
In [3]: y = indices(x.shape)
In [4]: locs = y[:,x >= 120] # put whatever you want in place of x >= 120
In [5]: pts = hsplit(locs, len(locs[0]))
In [6]: for pt in pts:
.....: print(', '.join(str(p[0]) for p in pt))
4, 4, 0
4, 4, 1
4, 4, 2
4, 4, 3
4, 4, 4
这是一个快速执行list.index()的功能的函数,除非找不到该异常不会引发异常。当心-在大型阵列上这可能非常慢。如果您愿意将其用作方法,则可以将其修补到数组上。
def ndindex(ndarray, item):
if len(ndarray.shape) == 1:
try:
return [ndarray.tolist().index(item)]
except:
pass
else:
for i, subarray in enumerate(ndarray):
try:
return [i] + ndindex(subarray, item)
except:
pass
In [1]: ndindex(x, 103)
Out[1]: [4, 0, 3]
To index on any criteria, you can so something like the following:
In [1]: from numpy import *
In [2]: x = arange(125).reshape((5,5,5))
In [3]: y = indices(x.shape)
In [4]: locs = y[:,x >= 120] # put whatever you want in place of x >= 120
In [5]: pts = hsplit(locs, len(locs[0]))
In [6]: for pt in pts:
.....: print(', '.join(str(p[0]) for p in pt))
4, 4, 0
4, 4, 1
4, 4, 2
4, 4, 3
4, 4, 4
And here’s a quick function to do what list.index() does, except doesn’t raise an exception if it’s not found. Beware — this is probably very slow on large arrays. You can probably monkey patch this on to arrays if you’d rather use it as a method.
def ndindex(ndarray, item):
if len(ndarray.shape) == 1:
try:
return [ndarray.tolist().index(item)]
except:
pass
else:
for i, subarray in enumerate(ndarray):
try:
return [i] + ndindex(subarray, item)
except:
pass
In [1]: ndindex(x, 103)
Out[1]: [4, 0, 3]
回答 8
对于一维数组,我建议np.flatnonzero(array == value)[0]
,这相当于两np.nonzero(array == value)[0][0]
和np.where(array == value)[0][0]
,但避免了拆箱1-元件的元组的丑陋。
For 1D arrays, I’d recommend np.flatnonzero(array == value)[0]
, which is equivalent to both np.nonzero(array == value)[0][0]
and np.where(array == value)[0][0]
but avoids the ugliness of unboxing a 1-element tuple.
回答 9
从np.where()中选择第一个元素的替代方法是将生成器表达式与枚举一起使用,例如:
>>> import numpy as np
>>> x = np.arange(100) # x = array([0, 1, 2, 3, ... 99])
>>> next(i for i, x_i in enumerate(x) if x_i == 2)
2
对于二维数组,可以这样做:
>>> x = np.arange(100).reshape(10,10) # x = array([[0, 1, 2,... 9], [10,..19],])
>>> next((i,j) for i, x_i in enumerate(x)
... for j, x_ij in enumerate(x_i) if x_ij == 2)
(0, 2)
这种方法的优势在于,它会在找到第一个匹配项后停止检查数组的元素,而np.where会检查所有元素是否匹配。如果数组中的早期匹配项,则生成器表达式会更快。
An alternative to selecting the first element from np.where() is to use a generator expression together with enumerate, such as:
>>> import numpy as np
>>> x = np.arange(100) # x = array([0, 1, 2, 3, ... 99])
>>> next(i for i, x_i in enumerate(x) if x_i == 2)
2
For a two dimensional array one would do:
>>> x = np.arange(100).reshape(10,10) # x = array([[0, 1, 2,... 9], [10,..19],])
>>> next((i,j) for i, x_i in enumerate(x)
... for j, x_ij in enumerate(x_i) if x_ij == 2)
(0, 2)
The advantage of this approach is that it stops checking the elements of the array after the first match is found, whereas np.where checks all elements for a match. A generator expression would be faster if there’s match early in the array.
回答 10
NumPy中有很多操作可以组合在一起完成。这将返回等于item的元素的索引:
numpy.nonzero(array - item)
然后,您可以使用列表的第一个元素来获得一个元素。
There are lots of operations in NumPy that could perhaps be put together to accomplish this. This will return indices of elements equal to item:
numpy.nonzero(array - item)
You could then take the first elements of the lists to get a single element.
回答 11
该numpy_indexed包(声明,我是它的作者)包含list.index为numpy.ndarray的矢量相当于; 那是:
sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]
import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx) # [2, -1]
该解决方案具有矢量化的性能,可推广到ndarrays,并具有多种处理缺失值的方法。
The numpy_indexed package (disclaimer, I am its author) contains a vectorized equivalent of list.index for numpy.ndarray; that is:
sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]
import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx) # [2, -1]
This solution has vectorized performance, generalizes to ndarrays, and has various ways of dealing with missing values.
回答 12
注意:这是针对python 2.7版本的
您可以使用lambda函数来解决此问题,并且它对NumPy数组和列表均有效。
your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]
import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]
你可以使用
result[0]
获取过滤元素的第一个索引。
对于python 3.6,请使用
list(result)
代替
result
Note: this is for python 2.7 version
You can use a lambda function to deal with the problem, and it works both on NumPy array and list.
your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]
import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]
And you can use
result[0]
to get the first index of the filtered elements.
For python 3.6, use
list(result)
instead of
result