问题:根据涉及len(string)的条件表达式从pandas DataFrame删除行,从而给出KeyError

我有一个pandas DataFrame,我想从中删除行,其中特定列中字符串的长度大于2。

我希望能够做到这一点(根据此答案):

df[(len(df['column name']) < 2)]

但我只是得到错误:

KeyError: u'no item named False'

我究竟做错了什么?

(注意:我知道我可以df.dropna()用来删除包含any的行NaN,但是我没有看到如何根据条件表达式删除行。)

I have a pandas DataFrame and I want to delete rows from it where the length of the string in a particular column is greater than 2.

I expect to be able to do this (per this answer):

df[(len(df['column name']) < 2)]

but I just get the error:

KeyError: u'no item named False'

What am I doing wrong?

(Note: I know I can use df.dropna() to get rid of rows that contain any NaN, but I didn’t see how to remove rows based on a conditional expression.)


回答 0

当您这样做时,len(df['column name'])您只会得到一个数字,即DataFrame中的行数(即列本身的长度)。如果要应用于len列中的每个元素,请使用df['column name'].map(len)。所以尝试

df[df['column name'].map(len) < 2]

When you do len(df['column name']) you are just getting one number, namely the number of rows in the DataFrame (i.e., the length of the column itself). If you want to apply len to each element in the column, use df['column name'].map(len). So try

df[df['column name'].map(len) < 2]

回答 1

要直接回答该问题的原始标题“如何基于条件表达式从pandas DataFrame中删除行”(我理解这不一定是OP的问题,但可以帮助其他用户遇到此问题),一种方法是使用该的方法:

df = df.drop(some labels)

df = df.drop(df[<some boolean condition>].index)

要删除列“得分”小于50的所有行:

df = df.drop(df[df.score < 50].index)

就地版本(如注释中所指出)

df.drop(df[df.score < 50].index, inplace=True)

多种条件

(请参阅布尔索引

运算符是:|for or&for and~for not。这些必须通过使用括号进行分组。

删除列“得分”小于50和大于20的所有行

df = df.drop(df[(df.score < 50) & (df.score > 20)].index)

To directly answer this question’s original title “How to delete rows from a pandas DataFrame based on a conditional expression” (which I understand is not necessarily the OP’s problem but could help other users coming across this question) one way to do this is to use the drop method:

df = df.drop(some labels)

df = df.drop(df[<some boolean condition>].index)

Example

To remove all rows where column ‘score’ is < 50:

df = df.drop(df[df.score < 50].index)

In place version (as pointed out in comments)

df.drop(df[df.score < 50].index, inplace=True)

Multiple conditions

(see Boolean Indexing)

The operators are: | for or, & for and, and ~ for not. These must be grouped by using parentheses.

To remove all rows where column ‘score’ is < 50 and > 20

df = df.drop(df[(df.score < 50) & (df.score > 20)].index)


回答 2

您可以将分配给DataFrame自身的过滤版本:

df = df[df.score > 50]

这比drop

%%timeit
test = pd.DataFrame({'x': np.random.randn(int(1e6))})
test = test[test.x < 0]
# 54.5 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
test = pd.DataFrame({'x': np.random.randn(int(1e6))})
test.drop(test[test.x > 0].index, inplace=True)
# 201 ms ± 17.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
test = pd.DataFrame({'x': np.random.randn(int(1e6))})
test = test.drop(test[test.x > 0].index)
# 194 ms ± 7.03 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

You can assign the DataFrame to a filtered version of itself:

df = df[df.score > 50]

This is faster than drop:

%%timeit
test = pd.DataFrame({'x': np.random.randn(int(1e6))})
test = test[test.x < 0]
# 54.5 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
test = pd.DataFrame({'x': np.random.randn(int(1e6))})
test.drop(test[test.x > 0].index, inplace=True)
# 201 ms ± 17.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%%timeit
test = pd.DataFrame({'x': np.random.randn(int(1e6))})
test = test.drop(test[test.x > 0].index)
# 194 ms ± 7.03 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

回答 3

我将扩展@User的通用解决方案以提供一个 drop免费的替代方案。这是针对根据问题标题(不是OP的问题)定向到此处的人员的

假设您要删除所有带有负值的行。一种班轮解决方案是:-

df = df[(df > 0).all(axis=1)]

逐步说明:-

让我们生成一个5×5随机正态分布数据帧

np.random.seed(0)
df = pd.DataFrame(np.random.randn(5,5), columns=list('ABCDE'))
      A         B         C         D         E
0  1.764052  0.400157  0.978738  2.240893  1.867558
1 -0.977278  0.950088 -0.151357 -0.103219  0.410599
2  0.144044  1.454274  0.761038  0.121675  0.443863
3  0.333674  1.494079 -0.205158  0.313068 -0.854096
4 -2.552990  0.653619  0.864436 -0.742165  2.269755

设条件为删除负片。满足条件的布尔df:

df > 0
      A     B      C      D      E
0   True  True   True   True   True
1  False  True  False  False   True
2   True  True   True   True   True
3   True  True  False   True  False
4  False  True   True  False   True

满足条件的所有行的布尔系列 注意,如果该行中的任何元素失败,则该行被标记为false

(df > 0).all(axis=1)
0     True
1    False
2     True
3    False
4    False
dtype: bool

最后根据条件从数据框中过滤出行

df[(df > 0).all(axis=1)]
      A         B         C         D         E
0  1.764052  0.400157  0.978738  2.240893  1.867558
2  0.144044  1.454274  0.761038  0.121675  0.443863

您可以将其分配回df,以实际删除 vs 上面完成的过滤
df = df[(df > 0).all(axis=1)]

可以很容易地扩展它以过滤出包含NaN的行(非数字项):
df = df[(~df.isnull()).all(axis=1)]

对于以下情况,也可以简化此操作:删除E列为负的所有行

df = df[(df.E>0)]

我想以一些分析统计数据结尾,说明为什么@User的drop解决方案比基于原始列的过滤要慢:-

%timeit df_new = df[(df.E>0)]
345 µs ± 10.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit dft.drop(dft[dft.E < 0].index, inplace=True)
890 µs ± 94.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

列基本上是Series一个NumPy数组,可以免费索引。对于那些对基础内存组织如何发挥执行速度感兴趣的人们,这里有一个很棒的链接加速熊猫

I will expand on @User’s generic solution to provide a drop free alternative. This is for folks directed here based on the question’s title (not OP ‘s problem)

Say you want to delete all rows with negative values. One liner solution is:-

df = df[(df > 0).all(axis=1)]

Step by step Explanation:–

Let’s generate a 5×5 random normal distribution data frame

np.random.seed(0)
df = pd.DataFrame(np.random.randn(5,5), columns=list('ABCDE'))
      A         B         C         D         E
0  1.764052  0.400157  0.978738  2.240893  1.867558
1 -0.977278  0.950088 -0.151357 -0.103219  0.410599
2  0.144044  1.454274  0.761038  0.121675  0.443863
3  0.333674  1.494079 -0.205158  0.313068 -0.854096
4 -2.552990  0.653619  0.864436 -0.742165  2.269755

Let the condition be deleting negatives. A boolean df satisfying the condition:-

df > 0
      A     B      C      D      E
0   True  True   True   True   True
1  False  True  False  False   True
2   True  True   True   True   True
3   True  True  False   True  False
4  False  True   True  False   True

A boolean series for all rows satisfying the condition Note if any element in the row fails the condition the row is marked false

(df > 0).all(axis=1)
0     True
1    False
2     True
3    False
4    False
dtype: bool

Finally filter out rows from data frame based on the condition

df[(df > 0).all(axis=1)]
      A         B         C         D         E
0  1.764052  0.400157  0.978738  2.240893  1.867558
2  0.144044  1.454274  0.761038  0.121675  0.443863

You can assign it back to df to actually delete vs filter ing done above
df = df[(df > 0).all(axis=1)]

This can easily be extended to filter out rows containing NaN s (non numeric entries):-
df = df[(~df.isnull()).all(axis=1)]

This can also be simplified for cases like: Delete all rows where column E is negative

df = df[(df.E>0)]

I would like to end with some profiling stats on why @User’s drop solution is slower than raw column based filtration:-

%timeit df_new = df[(df.E>0)]
345 µs ± 10.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit dft.drop(dft[dft.E < 0].index, inplace=True)
890 µs ± 94.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

A column is basically a Series i.e a NumPy array, it can be indexed without any cost. For folks interested in how the underlying memory organization plays into execution speed here is a great Link on Speeding up Pandas:


回答 4

在熊猫中,您可以str.len处理边界,并使用布尔结果对其进行过滤。

df[df['column name'].str.len().lt(2)]

In pandas you can do str.len with your boundary and using the Boolean result to filter it .

df[df['column name'].str.len().lt(2)]

回答 5

如果要基于某些复杂的条件在列值上删除数据帧的行,则以上述方式编写代码可能会很复杂。我有以下始终有效的简单解决方案。让我们假设您要删除带有“ header”的列,因此首先在列表中获取该列。

text_data = df['name'].tolist()

现在将一些函数应用于列表的每个元素,并将其放入熊猫系列:

text_length = pd.Series([func(t) for t in text_data])

就我而言,我只是想获取令牌的数量:

text_length = pd.Series([len(t.split()) for t in text_data])

现在,在数据框中添加上述系列的另一列:

df = df.assign(text_length = text_length .values)

现在我们可以在新列上应用条件,例如:

df = df[df.text_length  >  10]
def pass_filter(df, label, length, pass_type):

    text_data = df[label].tolist()

    text_length = pd.Series([len(t.split()) for t in text_data])

    df = df.assign(text_length = text_length .values)

    if pass_type == 'high':
        df = df[df.text_length  >  length]

    if pass_type == 'low':
        df = df[df.text_length  <  length]

    df = df.drop(columns=['text_length'])

    return df

If you want to drop rows of data frame on the basis of some complicated condition on the column value then writing that in the way shown above can be complicated. I have the following simpler solution which always works. Let us assume that you want to drop the column with ‘header’ so get that column in a list first.

text_data = df['name'].tolist()

now apply some function on the every element of the list and put that in a panda series:

text_length = pd.Series([func(t) for t in text_data])

in my case I was just trying to get the number of tokens:

text_length = pd.Series([len(t.split()) for t in text_data])

now add one extra column with the above series in the data frame:

df = df.assign(text_length = text_length .values)

now we can apply condition on the new column such as:

df = df[df.text_length  >  10]
def pass_filter(df, label, length, pass_type):

    text_data = df[label].tolist()

    text_length = pd.Series([len(t.split()) for t in text_data])

    df = df.assign(text_length = text_length .values)

    if pass_type == 'high':
        df = df[df.text_length  >  length]

    if pass_type == 'low':
        df = df[df.text_length  <  length]

    df = df.drop(columns=['text_length'])

    return df

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。