问题:熊猫唯一值多列
df = pd.DataFrame({'Col1': ['Bob', 'Joe', 'Bill', 'Mary', 'Joe'],
'Col2': ['Joe', 'Steve', 'Bob', 'Bob', 'Steve'],
'Col3': np.random.random(5)})
返回“ Col1”和“ Col2”的唯一值的最佳方法是什么?
所需的输出是
'Bob', 'Joe', 'Bill', 'Mary', 'Steve'
df = pd.DataFrame({'Col1': ['Bob', 'Joe', 'Bill', 'Mary', 'Joe'],
'Col2': ['Joe', 'Steve', 'Bob', 'Bob', 'Steve'],
'Col3': np.random.random(5)})
What is the best way to return the unique values of ‘Col1’ and ‘Col2’?
The desired output is
'Bob', 'Joe', 'Bill', 'Mary', 'Steve'
回答 0
pd.unique
从输入数组或DataFrame列或索引返回唯一值。
此函数的输入必须是一维的,因此将需要合并多列。最简单的方法是选择所需的列,然后在展平的NumPy数组中查看值。整个操作如下所示:
>>> pd.unique(df[['Col1', 'Col2']].values.ravel('K'))
array(['Bob', 'Joe', 'Bill', 'Mary', 'Steve'], dtype=object)
请注意,这ravel()
是一个数组方法,它返回多维数组的视图(如果可能)。该参数'K'
告诉方法按元素在内存中存储的顺序展平数组(熊猫通常以Fortran连续的顺序存储基础数组;列在行之前)。这可能比使用该方法的默认“ C”顺序快得多。
另一种方法是选择列并将其传递给np.unique
:
>>> np.unique(df[['Col1', 'Col2']].values)
array(['Bill', 'Bob', 'Joe', 'Mary', 'Steve'], dtype=object)
ravel()
此处不需要使用该方法,因为该方法可以处理多维数组。即使这样,它也可能比pd.unique
使用基于排序的算法而不是哈希表来标识唯一值的方法要慢。
对于较大的DataFrame,速度上的差异非常大(尤其是在只有少数唯一值的情况下):
>>> df1 = pd.concat([df]*100000, ignore_index=True) # DataFrame with 500000 rows
>>> %timeit np.unique(df1[['Col1', 'Col2']].values)
1 loop, best of 3: 1.12 s per loop
>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel('K'))
10 loops, best of 3: 38.9 ms per loop
>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel()) # ravel using C order
10 loops, best of 3: 49.9 ms per loop
pd.unique
returns the unique values from an input array, or DataFrame column or index.
The input to this function needs to be one-dimensional, so multiple columns will need to be combined. The simplest way is to select the columns you want and then view the values in a flattened NumPy array. The whole operation looks like this:
>>> pd.unique(df[['Col1', 'Col2']].values.ravel('K'))
array(['Bob', 'Joe', 'Bill', 'Mary', 'Steve'], dtype=object)
Note that ravel()
is an array method than returns a view (if possible) of a multidimensional array. The argument 'K'
tells the method to flatten the array in the order the elements are stored in memory (pandas typically stores underlying arrays in Fortran-contiguous order; columns before rows). This can be significantly faster than using the method’s default ‘C’ order.
An alternative way is to select the columns and pass them to np.unique
:
>>> np.unique(df[['Col1', 'Col2']].values)
array(['Bill', 'Bob', 'Joe', 'Mary', 'Steve'], dtype=object)
There is no need to use ravel()
here as the method handles multidimensional arrays. Even so, this is likely to be slower than pd.unique
as it uses a sort-based algorithm rather than a hashtable to identify unique values.
The difference in speed is significant for larger DataFrames (especially if there are only a handful of unique values):
>>> df1 = pd.concat([df]*100000, ignore_index=True) # DataFrame with 500000 rows
>>> %timeit np.unique(df1[['Col1', 'Col2']].values)
1 loop, best of 3: 1.12 s per loop
>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel('K'))
10 loops, best of 3: 38.9 ms per loop
>>> %timeit pd.unique(df1[['Col1', 'Col2']].values.ravel()) # ravel using C order
10 loops, best of 3: 49.9 ms per loop
回答 1
我DataFrame
在其列中设置了一些简单的字符串:
>>> df
a b
0 a g
1 b h
2 d a
3 e e
您可以连接感兴趣的列并调用unique
函数:
>>> pandas.concat([df['a'], df['b']]).unique()
array(['a', 'b', 'd', 'e', 'g', 'h'], dtype=object)
I have setup a DataFrame
with a few simple strings in it’s columns:
>>> df
a b
0 a g
1 b h
2 d a
3 e e
You can concatenate the columns you are interested in and call unique
function:
>>> pandas.concat([df['a'], df['b']]).unique()
array(['a', 'b', 'd', 'e', 'g', 'h'], dtype=object)
回答 2
In [5]: set(df.Col1).union(set(df.Col2))
Out[5]: {'Bill', 'Bob', 'Joe', 'Mary', 'Steve'}
要么:
set(df.Col1) | set(df.Col2)
In [5]: set(df.Col1).union(set(df.Col2))
Out[5]: {'Bill', 'Bob', 'Joe', 'Mary', 'Steve'}
Or:
set(df.Col1) | set(df.Col2)
回答 3
回答 4
非pandas
解决方案:使用set()。
import pandas as pd
import numpy as np
df = pd.DataFrame({'Col1' : ['Bob', 'Joe', 'Bill', 'Mary', 'Joe'],
'Col2' : ['Joe', 'Steve', 'Bob', 'Bob', 'Steve'],
'Col3' : np.random.random(5)})
print df
print set(df.Col1.append(df.Col2).values)
输出:
Col1 Col2 Col3
0 Bob Joe 0.201079
1 Joe Steve 0.703279
2 Bill Bob 0.722724
3 Mary Bob 0.093912
4 Joe Steve 0.766027
set(['Steve', 'Bob', 'Bill', 'Joe', 'Mary'])
Non-pandas
solution: using set().
import pandas as pd
import numpy as np
df = pd.DataFrame({'Col1' : ['Bob', 'Joe', 'Bill', 'Mary', 'Joe'],
'Col2' : ['Joe', 'Steve', 'Bob', 'Bob', 'Steve'],
'Col3' : np.random.random(5)})
print df
print set(df.Col1.append(df.Col2).values)
Output:
Col1 Col2 Col3
0 Bob Joe 0.201079
1 Joe Steve 0.703279
2 Bill Bob 0.722724
3 Mary Bob 0.093912
4 Joe Steve 0.766027
set(['Steve', 'Bob', 'Bill', 'Joe', 'Mary'])
回答 5
对于那些喜欢大熊猫的人来说,适用于它们,当然还有lambda函数:
df['Col3'] = df[['Col1', 'Col2']].apply(lambda x: ''.join(x), axis=1)
for those of us that love all things pandas, apply, and of course lambda functions:
df['Col3'] = df[['Col1', 'Col2']].apply(lambda x: ''.join(x), axis=1)
回答 6
这是另一种方式
import numpy as np
set(np.concatenate(df.values))
here’s another way
import numpy as np
set(np.concatenate(df.values))
回答 7
list(set(df[['Col1', 'Col2']].as_matrix().reshape((1,-1)).tolist()[0]))
输出将是[‘Mary’,’Joe’,’Steve’,’Bob’,’Bill’]
list(set(df[['Col1', 'Col2']].as_matrix().reshape((1,-1)).tolist()[0]))
The output will be
[‘Mary’, ‘Joe’, ‘Steve’, ‘Bob’, ‘Bill’]