问题:熊猫索引列标题或名称
如何获取python pandas中的索引列名称?这是一个示例数据框:
Column 1
Index Title
Apples 1
Oranges 2
Puppies 3
Ducks 4
我想做的是获取/设置数据框索引标题。这是我尝试过的:
import pandas as pd
data = {'Column 1' : [1., 2., 3., 4.],
'Index Title' : ["Apples", "Oranges", "Puppies", "Ducks"]}
df = pd.DataFrame(data)
df.index = df["Index Title"]
del df["Index Title"]
print df
有人知道怎么做吗?
回答 0
您可以通过其name
属性获取/设置索引
In [7]: df.index.name
Out[7]: 'Index Title'
In [8]: df.index.name = 'foo'
In [9]: df.index.name
Out[9]: 'foo'
In [10]: df
Out[10]:
Column 1
foo
Apples 1
Oranges 2
Puppies 3
Ducks 4
回答 1
您可以使用rename_axis
删除设置为None
:
d = {'Index Title': ['Apples', 'Oranges', 'Puppies', 'Ducks'],'Column 1': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(d).set_index('Index Title')
print (df)
Column 1
Index Title
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print (df.index.name)
Index Title
print (df.columns.name)
None
新功能在方法链中效果很好。
df = df.rename_axis('foo')
print (df)
Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
您还可以使用参数重命名列名称axis
:
d = {'Index Title': ['Apples', 'Oranges', 'Puppies', 'Ducks'],'Column 1': [1.0, 2.0, 3.0, 4.0]}
df = pd.DataFrame(d).set_index('Index Title').rename_axis('Col Name', axis=1)
print (df)
Col Name Column 1
Index Title
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print (df.index.name)
Index Title
print (df.columns.name)
Col Name
print df.rename_axis('foo').rename_axis("bar", axis="columns")
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
print df.rename_axis('foo').rename_axis("bar", axis=1)
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
从版本pandas 0.24.0+
可以使用参数index
和columns
:
df = df.rename_axis(index='foo', columns="bar")
print (df)
bar Column 1
foo
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
删除索引和列名称意味着将其设置为None
:
df = df.rename_axis(index=None, columns=None)
print (df)
Column 1
Apples 1.0
Oranges 2.0
Puppies 3.0
Ducks 4.0
如果MultiIndex
仅在索引中:
mux = pd.MultiIndex.from_arrays([['Apples', 'Oranges', 'Puppies', 'Ducks'],
list('abcd')],
names=['index name 1','index name 1'])
df = pd.DataFrame(np.random.randint(10, size=(4,6)),
index=mux,
columns=list('ABCDEF')).rename_axis('col name', axis=1)
print (df)
col name A B C D E F
index name 1 index name 1
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
print (df.index.name)
None
print (df.columns.name)
col name
print (df.index.names)
['index name 1', 'index name 1']
print (df.columns.names)
['col name']
df1 = df.rename_axis(('foo','bar'))
print (df1)
col name A B C D E F
foo bar
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
df2 = df.rename_axis('baz', axis=1)
print (df2)
baz A B C D E F
index name 1 index name 1
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
df2 = df.rename_axis(index=('foo','bar'), columns='baz')
print (df2)
baz A B C D E F
foo bar
Apples a 5 4 0 5 2 2
Oranges b 5 8 2 5 9 9
Puppies c 7 6 0 7 8 3
Ducks d 6 5 0 1 6 0
删除索引和列名称意味着将其设置为None
:
df2 = df.rename_axis(index=(None,None), columns=None)
print (df2)
A B C D E F
Apples a 6 9 9 5 4 6
Oranges b 2 6 7 4 3 5
Puppies c 6 3 6 3 5 1
Ducks d 4 9 1 3 0 5
对于MultiIndex
in索引和列,有必要.names
改为.name
使用list或tuple进行设置:
mux1 = pd.MultiIndex.from_arrays([['Apples', 'Oranges', 'Puppies', 'Ducks'],
list('abcd')],
names=['index name 1','index name 1'])
mux2 = pd.MultiIndex.from_product([list('ABC'),
list('XY')],
names=['col name 1','col name 2'])
df = pd.DataFrame(np.random.randint(10, size=(4,6)), index=mux1, columns=mux2)
print (df)
col name 1 A B C
col name 2 X Y X Y X Y
index name 1 index name 1
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
检查/设置值必须为复数:
print (df.index.name)
None
print (df.columns.name)
None
print (df.index.names)
['index name 1', 'index name 1']
print (df.columns.names)
['col name 1', 'col name 2']
df1 = df.rename_axis(('foo','bar'))
print (df1)
col name 1 A B C
col name 2 X Y X Y X Y
foo bar
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
df2 = df.rename_axis(('baz','bak'), axis=1)
print (df2)
baz A B C
bak X Y X Y X Y
index name 1 index name 1
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
df2 = df.rename_axis(index=('foo','bar'), columns=('baz','bak'))
print (df2)
baz A B C
bak X Y X Y X Y
foo bar
Apples a 2 9 4 7 0 3
Oranges b 9 0 6 0 9 4
Puppies c 2 4 6 1 4 4
Ducks d 6 6 7 1 2 8
删除索引和列名称意味着将其设置为None
:
df2 = df.rename_axis(index=(None,None), columns=(None,None))
print (df2)
A B C
X Y X Y X Y
Apples a 2 0 2 5 2 0
Oranges b 1 7 5 5 4 8
Puppies c 2 4 6 3 6 5
Ducks d 9 6 3 9 7 0
和@Jeff解决方案:
df.index.names = ['foo','bar']
df.columns.names = ['baz','bak']
print (df)
baz A B C
bak X Y X Y X Y
foo bar
Apples a 3 4 7 3 3 3
Oranges b 1 2 5 8 1 0
Puppies c 9 6 3 9 6 3
Ducks d 3 2 1 0 1 0
回答 2
df.index.name
应该可以。
Python具有dir
让您查询对象属性的功能。dir(df.index)
在这里很有帮助。
回答 3
用 df.index.rename('foo', inplace=True)
来设置索引名。
似乎该API自pandas 0.13起可用。
回答 4
如果您不想创建新行,而只是将其放在空单元格中,请使用:
df.columns.name = 'foo'
否则使用:
df.index.name = 'foo'
回答 5
df.columns.values
也给我们列名
回答 6
多索引解决方案位于jezrael的百科全书答案中,但是花了我一段时间才找到它,所以我发布了一个新答案:
df.index.names
给出多索引的名称(作为“冻结列表”)。
回答 7
只获取索引列名 df.index.names
熊猫的最新版本开始,将对单个Index或MultiIndex都适用。
作为在尝试找到获取索引名+列名列表的最佳方法时发现此问题的人,我会发现此答案很有用:
names = list(filter(None, df.index.names + df.columns.values.tolist()))
这不适用于没有索引,单列索引或多索引。它避免了调用reset_index(),因为这种简单的操作会对性能造成不必要的影响。我很惊讶没有一个内置的方法(我遇到过)。我猜想我经常遇到这种情况,因为我正在从数据帧索引映射到主键/唯一键的数据库中穿梭数据,但实际上这只是我的另一列。
回答 8
设置索引名称也可以在创建时完成:
pd.DataFrame(data={'age': [10,20,30], 'height': [100, 170, 175]}, index=pd.Series(['a', 'b', 'c'], name='Tag'))