通过索引访问collections.OrderedDict中的项目

问题:通过索引访问collections.OrderedDict中的项目

可以说我有以下代码:

import collections
d = collections.OrderedDict()
d['foo'] = 'python'
d['bar'] = 'spam'

有没有一种方法可以以编号方式访问项目,例如:

d(0) #foo's Output
d(1) #bar's Output

Lets say I have the following code:

import collections
d = collections.OrderedDict()
d['foo'] = 'python'
d['bar'] = 'spam'

Is there a way I can access the items in a numbered manner, like:

d(0) #foo's Output
d(1) #bar's Output

回答 0

如果是OrderedDict(),则可以通过获取(key,value)对的元组的索引来轻松访问元素,如下所示

>>> import collections
>>> d = collections.OrderedDict()
>>> d['foo'] = 'python'
>>> d['bar'] = 'spam'
>>> d.items()
[('foo', 'python'), ('bar', 'spam')]
>>> d.items()[0]
('foo', 'python')
>>> d.items()[1]
('bar', 'spam')

Python 3.X的注意事项

dict.items将返回一个可迭代的dict视图对象而不是一个列表。我们需要将调用包装到一个列表中,以使建立索引成为可能

>>> items = list(d.items())
>>> items
[('foo', 'python'), ('bar', 'spam')]
>>> items[0]
('foo', 'python')
>>> items[1]
('bar', 'spam')

If its an OrderedDict() you can easily access the elements by indexing by getting the tuples of (key,value) pairs as follows

>>> import collections
>>> d = collections.OrderedDict()
>>> d['foo'] = 'python'
>>> d['bar'] = 'spam'
>>> d.items()
[('foo', 'python'), ('bar', 'spam')]
>>> d.items()[0]
('foo', 'python')
>>> d.items()[1]
('bar', 'spam')

Note for Python 3.X

dict.items would return an iterable dict view object rather than a list. We need to wrap the call onto a list in order to make the indexing possible

>>> items = list(d.items())
>>> items
[('foo', 'python'), ('bar', 'spam')]
>>> items[0]
('foo', 'python')
>>> items[1]
('bar', 'spam')

回答 1

您是否必须使用OrderedDict还是特别想要以快速位置索引以某种方式排序的类似地图的类型?如果是后者,则考虑使用Python多种排序的dict类型之一(根据键的排序顺序对键值对进行排序)。一些实现还支持快速索引。例如,为此目的,sortedcontainers项目具有SortedDict类型。

>>> from sortedcontainers import SortedDict
>>> sd = SortedDict()
>>> sd['foo'] = 'python'
>>> sd['bar'] = 'spam'
>>> print sd.iloc[0] # Note that 'bar' comes before 'foo' in sort order.
'bar'
>>> # If you want the value, then simple do a key lookup:
>>> print sd[sd.iloc[1]]
'python'

Do you have to use an OrderedDict or do you specifically want a map-like type that’s ordered in some way with fast positional indexing? If the latter, then consider one of Python’s many sorted dict types (which orders key-value pairs based on key sort order). Some implementations also support fast indexing. For example, the sortedcontainers project has a SortedDict type for just this purpose.

>>> from sortedcontainers import SortedDict
>>> sd = SortedDict()
>>> sd['foo'] = 'python'
>>> sd['bar'] = 'spam'
>>> print sd.iloc[0] # Note that 'bar' comes before 'foo' in sort order.
'bar'
>>> # If you want the value, then simple do a key lookup:
>>> print sd[sd.iloc[1]]
'python'

回答 2

如果您要在OrderedDict中创建第一个条目(或靠近它)而不创建列表,则是一种特殊情况。(此版本已更新为Python 3):

>>> from collections import OrderedDict
>>> 
>>> d = OrderedDict()
>>> d["foo"] = "one"
>>> d["bar"] = "two"
>>> d["baz"] = "three"
>>> next(iter(d.items()))
('foo', 'one')
>>> next(iter(d.values()))
'one'

(当您第一次说“ next()”时,它的意思实际上是“第一”。)

在我的非正式测试中,next(iter(d.items()))使用小OrderedDict仅比快一点items()[0]。使用10,000个条目的OrderedDict,next(iter(d.items()))比快200倍items()[0]

但是,如果您只保存items()列表一次,然后大量使用该列表,那可能会更快。或者,如果您反复{创建一个items()迭代器并将其逐步移动到所需位置},那可能会更慢。

Here is a special case if you want the first entry (or close to it) in an OrderedDict, without creating a list. (This has been updated to Python 3):

>>> from collections import OrderedDict
>>> 
>>> d = OrderedDict()
>>> d["foo"] = "one"
>>> d["bar"] = "two"
>>> d["baz"] = "three"
>>> next(iter(d.items()))
('foo', 'one')
>>> next(iter(d.values()))
'one'

(The first time you say “next()”, it really means “first.”)

In my informal test, next(iter(d.items())) with a small OrderedDict is only a tiny bit faster than items()[0]. With an OrderedDict of 10,000 entries, next(iter(d.items())) was about 200 times faster than items()[0].

BUT if you save the items() list once and then use the list a lot, that could be faster. Or if you repeatedly { create an items() iterator and step through it to to the position you want }, that could be slower.


回答 3

从包中使用IndexedOrderedDict会大大提高效率indexed

根据Niklas的评论,我对OrderedDictIndexedOrderedDict进行了基准测试,其中包含1000个条目。

In [1]: from numpy import *
In [2]: from indexed import IndexedOrderedDict
In [3]: id=IndexedOrderedDict(zip(arange(1000),random.random(1000)))
In [4]: timeit id.keys()[56]
1000000 loops, best of 3: 969 ns per loop

In [8]: from collections import OrderedDict
In [9]: od=OrderedDict(zip(arange(1000),random.random(1000)))
In [10]: timeit od.keys()[56]
10000 loops, best of 3: 104 µs per loop

在此特定情况下,在特定位置的索引元素中的IndexedOrderedDict快约100倍。

It is dramatically more efficient to use IndexedOrderedDict from the indexed package.

Following Niklas’s comment, I have done a benchmark on OrderedDict and IndexedOrderedDict with 1000 entries.

In [1]: from numpy import *
In [2]: from indexed import IndexedOrderedDict
In [3]: id=IndexedOrderedDict(zip(arange(1000),random.random(1000)))
In [4]: timeit id.keys()[56]
1000000 loops, best of 3: 969 ns per loop

In [8]: from collections import OrderedDict
In [9]: od=OrderedDict(zip(arange(1000),random.random(1000)))
In [10]: timeit od.keys()[56]
10000 loops, best of 3: 104 µs per loop

IndexedOrderedDict is ~100 times faster in indexing elements at specific position in this specific case.


回答 4

该社区Wiki尝试收集现有答案。

Python 2.7

在Python 2中,keys()values(),和items()函数OrderedDict的返回列表。使用values为例,最简单的方法是

d.values()[0]  # "python"
d.values()[1]  # "spam"

对于大集合,你只关心一个单一的指标,你能避免使用生成器版本创建的完整列表,iterkeysitervaluesiteritems

import itertools
next(itertools.islice(d.itervalues(), 0, 1))  # "python"
next(itertools.islice(d.itervalues(), 1, 2))  # "spam"

indexed.py包提供IndexedOrderedDict,这是专为这种使用情况下,将是最快的选项。

from indexed import IndexedOrderedDict
d = IndexedOrderedDict({'foo':'python','bar':'spam'})
d.values()[0]  # "python"
d.values()[1]  # "spam"

对于具有随机访问权限的大型词典,使用itervalues可能会更快:

$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 1000;   d = OrderedDict({i:i for i in range(size)})'  'i = randint(0, size-1); d.values()[i:i+1]'
1000 loops, best of 3: 259 usec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 10000;  d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
100 loops, best of 3: 2.3 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 100000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
10 loops, best of 3: 24.5 msec per loop

$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 1000;   d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
10000 loops, best of 3: 118 usec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 10000;  d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
1000 loops, best of 3: 1.26 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 100000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
100 loops, best of 3: 10.9 msec per loop

$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 1000;   d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.19 usec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 10000;  d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.24 usec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 100000; d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.61 usec per loop

+--------+-----------+----------------+---------+
|  size  | list (ms) | generator (ms) | indexed |
+--------+-----------+----------------+---------+
|   1000 | .259      | .118           | .00219  |
|  10000 | 2.3       | 1.26           | .00224  |
| 100000 | 24.5      | 10.9           | .00261  |
+--------+-----------+----------------+---------+

Python 3.6

Python 3具有相同的两个基本选项(列表vs生成器),但是默认情况下dict方法返回生成器。

清单方法:

list(d.values())[0]  # "python"
list(d.values())[1]  # "spam"

生成器方法:

import itertools
next(itertools.islice(d.values(), 0, 1))  # "python"
next(itertools.islice(d.values(), 1, 2))  # "spam"

Python 3字典比python 2快一个数量级,并且使用生成器的速度类似。

+--------+-----------+----------------+---------+
|  size  | list (ms) | generator (ms) | indexed |
+--------+-----------+----------------+---------+
|   1000 | .0316     | .0165          | .00262  |
|  10000 | .288      | .166           | .00294  |
| 100000 | 3.53      | 1.48           | .00332  |
+--------+-----------+----------------+---------+

This community wiki attempts to collect existing answers.

Python 2.7

In python 2, the keys(), values(), and items() functions of OrderedDict return lists. Using values as an example, the simplest way is

d.values()[0]  # "python"
d.values()[1]  # "spam"

For large collections where you only care about a single index, you can avoid creating the full list using the generator versions, iterkeys, itervalues and iteritems:

import itertools
next(itertools.islice(d.itervalues(), 0, 1))  # "python"
next(itertools.islice(d.itervalues(), 1, 2))  # "spam"

The indexed.py package provides IndexedOrderedDict, which is designed for this use case and will be the fastest option.

from indexed import IndexedOrderedDict
d = IndexedOrderedDict({'foo':'python','bar':'spam'})
d.values()[0]  # "python"
d.values()[1]  # "spam"

Using itervalues can be considerably faster for large dictionaries with random access:

$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 1000;   d = OrderedDict({i:i for i in range(size)})'  'i = randint(0, size-1); d.values()[i:i+1]'
1000 loops, best of 3: 259 usec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 10000;  d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
100 loops, best of 3: 2.3 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 100000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
10 loops, best of 3: 24.5 msec per loop

$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 1000;   d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
10000 loops, best of 3: 118 usec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 10000;  d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
1000 loops, best of 3: 1.26 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 100000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
100 loops, best of 3: 10.9 msec per loop

$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 1000;   d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.19 usec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 10000;  d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.24 usec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 100000; d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.61 usec per loop

+--------+-----------+----------------+---------+
|  size  | list (ms) | generator (ms) | indexed |
+--------+-----------+----------------+---------+
|   1000 | .259      | .118           | .00219  |
|  10000 | 2.3       | 1.26           | .00224  |
| 100000 | 24.5      | 10.9           | .00261  |
+--------+-----------+----------------+---------+

Python 3.6

Python 3 has the same two basic options (list vs generator), but the dict methods return generators by default.

List method:

list(d.values())[0]  # "python"
list(d.values())[1]  # "spam"

Generator method:

import itertools
next(itertools.islice(d.values(), 0, 1))  # "python"
next(itertools.islice(d.values(), 1, 2))  # "spam"

Python 3 dictionaries are an order of magnitude faster than python 2 and have similar speedups for using generators.

+--------+-----------+----------------+---------+
|  size  | list (ms) | generator (ms) | indexed |
+--------+-----------+----------------+---------+
|   1000 | .0316     | .0165          | .00262  |
|  10000 | .288      | .166           | .00294  |
| 100000 | 3.53      | 1.48           | .00332  |
+--------+-----------+----------------+---------+

回答 5

这是一个新时代,Python 3.6.1词典现在可以保留其顺序。这些语义不明确,因为这需要BDFL批准。但是雷蒙德·海廷格(Raymond Hettinger)是下一个最好的东西(而且更有趣),他提出了一个非常有力的理由,那就是字典将在很长一段时间内被订购。

因此,现在很容易创建字典的切片:

test_dict = {
                'first':  1,
                'second': 2,
                'third':  3,
                'fourth': 4
            }

list(test_dict.items())[:2]

注意:现在,字典插入顺序保留在Python 3.7中正式的

It’s a new era and with Python 3.6.1 dictionaries now retain their order. These semantics aren’t explicit because that would require BDFL approval. But Raymond Hettinger is the next best thing (and funnier) and he makes a pretty strong case that dictionaries will be ordered for a very long time.

So now it’s easy to create slices of a dictionary:

test_dict = {
                'first':  1,
                'second': 2,
                'third':  3,
                'fourth': 4
            }

list(test_dict.items())[:2]

Note: Dictonary insertion-order preservation is now official in Python 3.7.


回答 6

对于OrderedDict(),您可以通过按以下方式获取(键,值)对的元组或通过使用’.values()’进行索引来访问元素。

>>> import collections
>>> d = collections.OrderedDict()
>>> d['foo'] = 'python'
>>> d['bar'] = 'spam'
>>> d.items()
[('foo', 'python'), ('bar', 'spam')]
>>>d.values()
odict_values(['python','spam'])
>>>list(d.values())
['python','spam']

for OrderedDict() you can access the elements by indexing by getting the tuples of (key,value) pairs as follows or using ‘.values()’

>>> import collections
>>> d = collections.OrderedDict()
>>> d['foo'] = 'python'
>>> d['bar'] = 'spam'
>>> d.items()
[('foo', 'python'), ('bar', 'spam')]
>>>d.values()
odict_values(['python','spam'])
>>>list(d.values())
['python','spam']