问题:Matplotlib中的反向颜色图
我想知道如何简单地反转给定颜色图的颜色顺序,以便将其与plot_surface一起使用。
I would like to know how to simply reverse the color order of a given colormap in order to use it with plot_surface.
回答 0
标准色图也都具有相反的版本。它们具有相同的名称,并_r
附加在末尾。(此处的文档。 )
The standard colormaps also all have reversed versions. They have the same names with _r
tacked on to the end. (Documentation here. )
回答 1
在matplotlib中,颜色映射不是列表,但包含的颜色列表为colormap.colors
。并且该模块matplotlib.colors
提供了ListedColormap()
根据列表生成颜色图的功能。因此,您可以通过以下方式反转任何颜色图
colormap_r = ListedColormap ( colormap . colors [::- 1 ])
In matplotlib a color map isn’t a list, but it contains the list of its colors as colormap.colors
. And the module matplotlib.colors
provides a function ListedColormap()
to generate a color map from a list. So you can reverse any color map by doing
colormap_r = ListedColormap(colormap.colors[::-1])
回答 2
解决方案非常简单。假设您要使用“秋天”颜色图方案。标准版:
cmap = matplotlib . cm . autumn
要反转颜色图色谱,请使用get_cmap()函数,并将“ _r”附加到颜色图标题中,如下所示:
cmap_reversed = matplotlib . cm . get_cmap ( 'autumn_r' )
The solution is pretty straightforward. Suppose you want to use the “autumn” colormap scheme. The standard version:
cmap = matplotlib.cm.autumn
To reverse the colormap color spectrum, use get_cmap() function and append ‘_r’ to the colormap title like this:
cmap_reversed = matplotlib.cm.get_cmap('autumn_r')
回答 3
由于a LinearSegmentedColormaps
基于红色,绿色和蓝色的词典,因此有必要将每个项目取反:
import matplotlib . pyplot as plt
import matplotlib as mpl
def reverse_colourmap ( cmap , name = 'my_cmap_r' ):
"""
In:
cmap, name
Out:
my_cmap_r
Explanation:
t[0] goes from 0 to 1
row i: x y0 y1 -> t[0] t[1] t[2]
/
/
row i+1: x y0 y1 -> t[n] t[1] t[2]
so the inverse should do the same:
row i+1: x y1 y0 -> 1-t[0] t[2] t[1]
/
/
row i: x y1 y0 -> 1-t[n] t[2] t[1]
"""
reverse = []
k = []
for key in cmap . _segmentdata :
k . append ( key )
channel = cmap . _segmentdata [ key ]
data = []
for t in channel :
data . append (( 1 - t [ 0 ], t [ 2 ], t [ 1 ]))
reverse . append ( sorted ( data ))
LinearL = dict ( zip ( k , reverse ))
my_cmap_r = mpl . colors . LinearSegmentedColormap ( name , LinearL )
return my_cmap_r
看到它的工作原理:
my_cmap
< matplotlib . colors . LinearSegmentedColormap at 0xd5a0518 >
my_cmap_r = reverse_colourmap ( my_cmap )
fig = plt . figure ( figsize =( 8 , 2 ))
ax1 = fig . add_axes ([ 0.05 , 0.80 , 0.9 , 0.15 ])
ax2 = fig . add_axes ([ 0.05 , 0.475 , 0.9 , 0.15 ])
norm = mpl . colors . Normalize ( vmin = 0 , vmax = 1 )
cb1 = mpl . colorbar . ColorbarBase ( ax1 , cmap = my_cmap , norm = norm , orientation = 'horizontal' )
cb2 = mpl . colorbar . ColorbarBase ( ax2 , cmap = my_cmap_r , norm = norm , orientation = 'horizontal' )
编辑
我没有收到user3445587的评论。它在彩虹色图上工作良好:
cmap = mpl . cm . jet
cmap_r = reverse_colourmap ( cmap )
fig = plt . figure ( figsize =( 8 , 2 ))
ax1 = fig . add_axes ([ 0.05 , 0.80 , 0.9 , 0.15 ])
ax2 = fig . add_axes ([ 0.05 , 0.475 , 0.9 , 0.15 ])
norm = mpl . colors . Normalize ( vmin = 0 , vmax = 1 )
cb1 = mpl . colorbar . ColorbarBase ( ax1 , cmap = cmap , norm = norm , orientation = 'horizontal' )
cb2 = mpl . colorbar . ColorbarBase ( ax2 , cmap = cmap_r , norm = norm , orientation = 'horizontal' )
但这对于自定义声明的颜色图特别有用,因为自定义声明的颜色图没有默认值_r
。以下示例取自http://matplotlib.org/examples/pylab_examples/custom_cmap.html :
cdict1 = { 'red' : (( 0.0 , 0.0 , 0.0 ),
( 0.5 , 0.0 , 0.1 ),
( 1.0 , 1.0 , 1.0 )),
'green' : (( 0.0 , 0.0 , 0.0 ),
( 1.0 , 0.0 , 0.0 )),
'blue' : (( 0.0 , 0.0 , 1.0 ),
( 0.5 , 0.1 , 0.0 ),
( 1.0 , 0.0 , 0.0 ))
}
blue_red1 = mpl . colors . LinearSegmentedColormap ( 'BlueRed1' , cdict1 )
blue_red1_r = reverse_colourmap ( blue_red1 )
fig = plt . figure ( figsize =( 8 , 2 ))
ax1 = fig . add_axes ([ 0.05 , 0.80 , 0.9 , 0.15 ])
ax2 = fig . add_axes ([ 0.05 , 0.475 , 0.9 , 0.15 ])
norm = mpl . colors . Normalize ( vmin = 0 , vmax = 1 )
cb1 = mpl . colorbar . ColorbarBase ( ax1 , cmap = blue_red1 , norm = norm , orientation = 'horizontal' )
cb2 = mpl . colorbar . ColorbarBase ( ax2 , cmap = blue_red1_r , norm = norm , orientation = 'horizontal' )
As a LinearSegmentedColormaps
is based on a dictionary of red, green and blue, it’s necessary to reverse each item:
import matplotlib.pyplot as plt
import matplotlib as mpl
def reverse_colourmap(cmap, name = 'my_cmap_r'):
"""
In:
cmap, name
Out:
my_cmap_r
Explanation:
t[0] goes from 0 to 1
row i: x y0 y1 -> t[0] t[1] t[2]
/
/
row i+1: x y0 y1 -> t[n] t[1] t[2]
so the inverse should do the same:
row i+1: x y1 y0 -> 1-t[0] t[2] t[1]
/
/
row i: x y1 y0 -> 1-t[n] t[2] t[1]
"""
reverse = []
k = []
for key in cmap._segmentdata:
k.append(key)
channel = cmap._segmentdata[key]
data = []
for t in channel:
data.append((1-t[0],t[2],t[1]))
reverse.append(sorted(data))
LinearL = dict(zip(k,reverse))
my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
return my_cmap_r
See that it works:
my_cmap
<matplotlib.colors.LinearSegmentedColormap at 0xd5a0518>
my_cmap_r = reverse_colourmap(my_cmap)
fig = plt.figure(figsize=(8, 2))
ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.Normalize(vmin=0, vmax=1)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = my_cmap, norm=norm,orientation='horizontal')
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = my_cmap_r, norm=norm, orientation='horizontal')
EDIT
I don’t get the comment of user3445587. It works fine on the rainbow colormap:
cmap = mpl.cm.jet
cmap_r = reverse_colourmap(cmap)
fig = plt.figure(figsize=(8, 2))
ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.Normalize(vmin=0, vmax=1)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = cmap, norm=norm,orientation='horizontal')
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = cmap_r, norm=norm, orientation='horizontal')
But it especially works nice for custom declared colormaps, as there is not a default _r
for custom declared colormaps. Following example taken from http://matplotlib.org/examples/pylab_examples/custom_cmap.html :
cdict1 = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
blue_red1 = mpl.colors.LinearSegmentedColormap('BlueRed1', cdict1)
blue_red1_r = reverse_colourmap(blue_red1)
fig = plt.figure(figsize=(8, 2))
ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.Normalize(vmin=0, vmax=1)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = blue_red1, norm=norm,orientation='horizontal')
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = blue_red1_r, norm=norm, orientation='horizontal')
回答 4
从Matplotlib 2.0开始,有reversed()
一种用于ListedColormap
和LinearSegmentedColorMap
对象的方法,因此您只需
cmap_reversed = cmap.reversed()
这 是文档。
As of Matplotlib 2.0, there is a reversed()
method for ListedColormap
and LinearSegmentedColorMap
objects, so you can just do
cmap_reversed = cmap.reversed()
Here is the documentation.
回答 5
有两种类型的LinearSegmentedColormaps。在某些情况下,_segmentdata是明确给出的,例如,对于jet:
>>> cm . jet . _segmentdata
{ 'blue' : (( 0.0 , 0.5 , 0.5 ), ( 0.11 , 1 , 1 ), ( 0.34 , 1 , 1 ), ( 0.65 , 0 , 0 ), ( 1 , 0 , 0 )), 'red' : (( 0.0 , 0 , 0 ), ( 0.35 , 0 , 0 ), ( 0.66 , 1 , 1 ), ( 0.89 , 1 , 1 ), ( 1 , 0.5 , 0.5 )), 'green' : (( 0.0 , 0 , 0 ), ( 0.125 , 0 , 0 ), ( 0.375 , 1 , 1 ), ( 0.64 , 1 , 1 ), ( 0.91 , 0 , 0 ), ( 1 , 0 , 0 ))}
对于Rainbow,_segmentdata给出如下:
>>> cm . rainbow . _segmentdata
{ 'blue' : < function < lambda > at 0x7fac32ac2b70 >, 'red' : < function < lambda > at 0x7fac32ac7840 >, 'green' : < function < lambda > at 0x7fac32ac2d08 >}
我们可以在matplotlib的源代码中找到这些函数,这些函数以
_rainbow_data = {
'red' : gfunc [ 33 ], # 33: lambda x: np.abs(2 * x - 0.5),
'green' : gfunc [ 13 ], # 13: lambda x: np.sin(x * np.pi),
'blue' : gfunc [ 10 ], # 10: lambda x: np.cos(x * np.pi / 2)
}
您想要的一切都已经在matplotlib中完成,只需调用cm.revcmap,即可反转两种类型的segmentdata,因此
cm . revcmap ( cm . rainbow . _segmentdata )
应该做的工作-您可以简单地从中创建一个新的LinearSegmentData。在revcmap中,基于功能的SegmentData的逆转是通过
def _reverser ( f ):
def freversed ( x ):
return f ( 1 - x )
return freversed
而其他列表照常颠倒
valnew = [( 1.0 - x , y1 , y0 ) for x , y0 , y1 in reversed ( val )]
所以实际上,您想要的全部是
def reverse_colourmap ( cmap , name = 'my_cmap_r' ):
return mpl . colors . LinearSegmentedColormap ( name , cm . revcmap ( cmap . _segmentdata ))
There are two types of LinearSegmentedColormaps. In some, the _segmentdata is given explicitly, e.g., for jet:
>>> cm.jet._segmentdata
{'blue': ((0.0, 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0)), 'red': ((0.0, 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), 'green': ((0.0, 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0))}
For rainbow, _segmentdata is given as follows:
>>> cm.rainbow._segmentdata
{'blue': <function <lambda> at 0x7fac32ac2b70>, 'red': <function <lambda> at 0x7fac32ac7840>, 'green': <function <lambda> at 0x7fac32ac2d08>}
We can find the functions in the source of matplotlib, where they are given as
_rainbow_data = {
'red': gfunc[33], # 33: lambda x: np.abs(2 * x - 0.5),
'green': gfunc[13], # 13: lambda x: np.sin(x * np.pi),
'blue': gfunc[10], # 10: lambda x: np.cos(x * np.pi / 2)
}
Everything you want is already done in matplotlib, just call cm.revcmap, which reverses both types of segmentdata, so
cm.revcmap(cm.rainbow._segmentdata)
should do the job – you can simply create a new LinearSegmentData from that. In revcmap, the reversal of function based SegmentData is done with
def _reverser(f):
def freversed(x):
return f(1 - x)
return freversed
while the other lists are reversed as usual
valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)]
So actually the whole thing you want, is
def reverse_colourmap(cmap, name = 'my_cmap_r'):
return mpl.colors.LinearSegmentedColormap(name, cm.revcmap(cmap._segmentdata))
回答 6
还没有内置的方法可以反转任意颜色图,但是一种简单的解决方案是实际上不修改颜色条,而是创建一个反转的Normalize对象:
from matplotlib . colors import Normalize
class InvertedNormalize ( Normalize ):
def __call__ ( self , * args , ** kwargs ):
return 1 - super ( InvertedNormalize , self ). __call__ (* args , ** kwargs )
然后可以plot_surface
通过执行以下操作将其与其他Matplotlib绘图功能一起使用
inverted_norm = InvertedNormalize ( vmin = 10 , vmax = 100 )
ax . plot_surface (..., cmap =< your colormap >, norm = inverted_norm )
这将与任何Matplotlib颜色图一起使用。
There is no built-in way (yet) of reversing arbitrary colormaps, but one simple solution is to actually not modify the colorbar but to create an inverting Normalize object:
from matplotlib.colors import Normalize
class InvertedNormalize(Normalize):
def __call__(self, *args, **kwargs):
return 1 - super(InvertedNormalize, self).__call__(*args, **kwargs)
You can then use this with plot_surface
and other Matplotlib plotting functions by doing e.g.
inverted_norm = InvertedNormalize(vmin=10, vmax=100)
ax.plot_surface(..., cmap=<your colormap>, norm=inverted_norm)
This will work with any Matplotlib colormap.