I want to make a scatterplot (using matplotlib) where the points are shaded according to a third variable. I’ve got very close with this:
plt.scatter(w, M, c=p, marker='s')
where w and M are the datapoints and p is the variable I want to shade with respect to.
However I want to do it in greyscale rather than colour. Can anyone help?
回答 0
无需手动设置颜色。相反,请指定灰度颜色图…
import numpy as np
import matplotlib.pyplot as plt
# Generate data...
x = np.random.random(10)
y = np.random.random(10)# Plot...
plt.scatter(x, y, c=y, s=500)
plt.gray()
plt.show()
import matplotlib.pyplot as plt
import numpy as np
# Generate data...
x = np.random.random(10)
y = np.random.random(10)
plt.scatter(x, y, c=y, s=500, cmap='gray')
plt.show()
There’s no need to manually set the colors. Instead, specify a grayscale colormap…
import numpy as np
import matplotlib.pyplot as plt
# Generate data...
x = np.random.random(10)
y = np.random.random(10)
# Plot...
plt.scatter(x, y, c=y, s=500)
plt.gray()
plt.show()
Or, if you’d prefer a wider range of colormaps, you can also specify the cmap kwarg to scatter. To use the reversed version of any of these, just specify the “_r” version of any of them. E.g. gray_r instead of gray. There are several different grayscale colormaps pre-made (e.g. gray, gist_yarg, binary, etc).
import matplotlib.pyplot as plt
import numpy as np
# Generate data...
x = np.random.random(10)
y = np.random.random(10)
plt.scatter(x, y, c=y, s=500, cmap='gray')
plt.show()
from matplotlib import pyplot as plt
x =[1,2,3,4,5,6,7,8,9]
y =[125,32,54,253,67,87,233,56,67]
color =[str(item/255.)for item in y]
plt.scatter(x, y, s=500, c=color)
plt.show()
In matplotlib grey colors can be given as a string of a numerical value between 0-1.
For example c = '0.1'
Then you can convert your third variable in a value inside this range and to use it to color your points.
In the following example I used the y position of the point as the value that determines the color:
from matplotlib import pyplot as plt
x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
y = [125, 32, 54, 253, 67, 87, 233, 56, 67]
color = [str(item/255.) for item in y]
plt.scatter(x, y, s=500, c=color)
plt.show()
x=['A','B','B','C','A','B']
y=[15,30,25,18,22,13]# Function to map the colors as a list from the input list of x variablesdef pltcolor(lst):
cols=[]for l in lst:if l=='A':
cols.append('red')elif l=='B':
cols.append('blue')else:
cols.append('green')return cols
# Create the colors list using the function above
cols=pltcolor(x)
plt.scatter(x=x,y=y,s=500,c=cols)#Pass on the list created by the function here
plt.grid(True)
plt.show()
Sometimes you may need to plot color precisely based on the x-value case. For example, you may have a dataframe with 3 types of variables and some data points. And you want to do following,
Plot points corresponding to Physical variable ‘A’ in RED.
Plot points corresponding to Physical variable ‘B’ in BLUE.
Plot points corresponding to Physical variable ‘C’ in GREEN.
In this case, you may have to write to short function to map the x-values to corresponding color names as a list and then pass on that list to the plt.scatter command.
x=['A','B','B','C','A','B']
y=[15,30,25,18,22,13]
# Function to map the colors as a list from the input list of x variables
def pltcolor(lst):
cols=[]
for l in lst:
if l=='A':
cols.append('red')
elif l=='B':
cols.append('blue')
else:
cols.append('green')
return cols
# Create the colors list using the function above
cols=pltcolor(x)
plt.scatter(x=x,y=y,s=500,c=cols) #Pass on the list created by the function here
plt.grid(True)
plt.show()