问题:Python中整数的长度
In Python, how do you find the number of digits in an integer?
回答 0
如果您希望整数的长度与整数的位数一样,则可以始终将其转换为string,str(133)
并找到其长度,如len(str(123))
。
If you want the length of an integer as in the number of digits in the integer, you can always convert it to string like str(133)
and find its length like len(str(123))
.
回答 1
不转换为字符串
import math
digits = int(math.log10(n))+1
同时处理零和负数
import math
if n > 0:
digits = int(math.log10(n))+1
elif n == 0:
digits = 1
else:
digits = int(math.log10(-n))+2 # +1 if you don't count the '-'
您可能希望将其放入函数中:)
这是一些基准。在len(str())
已经落后的甚至是相当小的数字
timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop
timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop
timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop
Without conversion to string
import math
digits = int(math.log10(n))+1
To also handle zero and negative numbers
import math
if n > 0:
digits = int(math.log10(n))+1
elif n == 0:
digits = 1
else:
digits = int(math.log10(-n))+2 # +1 if you don't count the '-'
You’d probably want to put that in a function :)
Here are some benchmarks. The len(str())
is already behind for even quite small numbers
timeit math.log10(2**8)
1000000 loops, best of 3: 746 ns per loop
timeit len(str(2**8))
1000000 loops, best of 3: 1.1 µs per loop
timeit math.log10(2**100)
1000000 loops, best of 3: 775 ns per loop
timeit len(str(2**100))
100000 loops, best of 3: 3.2 µs per loop
timeit math.log10(2**10000)
1000000 loops, best of 3: 844 ns per loop
timeit len(str(2**10000))
100 loops, best of 3: 10.3 ms per loop
回答 2
所有math.log10解决方案都会给您带来问题。
math.log10速度很快,但是当您的数字大于999999999999997时会出现问题。这是因为浮点数太多.9s,导致结果四舍五入。
解决方案是对大于该阈值的数字使用while计数器方法。
为了使速度更快,请创建10 ^ 16、10 ^ 17,依此类推,并作为变量存储在列表中。这样,它就像一个表查找。
def getIntegerPlaces(theNumber):
if theNumber <= 999999999999997:
return int(math.log10(theNumber)) + 1
else:
counter = 15
while theNumber >= 10**counter:
counter += 1
return counter
All math.log10 solutions will give you problems.
math.log10 is fast but gives problem when your number is greater than 999999999999997. This is because the float have too many .9s, causing the result to round up.
The solution is to use a while counter method for numbers above that threshold.
To make this even faster, create 10^16, 10^17 so on so forth and store as variables in a list. That way, it is like a table lookup.
def getIntegerPlaces(theNumber):
if theNumber <= 999999999999997:
return int(math.log10(theNumber)) + 1
else:
counter = 15
while theNumber >= 10**counter:
counter += 1
return counter
回答 3
Python 2.*
int
占用4或8个字节(32或64位),具体取决于您的Python构建。 sys.maxint
(2**31-1
对于32位整数,2**63-1
对于64位整数)将告诉您获得两种可能性中的哪一种。
在Python 3中,int
s(类似于long
Python 2中的)可以采用任意大小,直到可用内存量为止。sys.getsizeof
为您提供任何给定值一个很好的迹象,但它确实也算一些固定开销:
>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28
如果,正如其他答案所暗示的那样,如果您正在考虑某个整数值的字符串表示形式,则只需采用该len
表示形式的形式即可,无论是以10还是10为底!
Python 2.*
int
s take either 4 or 8 bytes (32 or 64 bits), depending on your Python build. sys.maxint
(2**31-1
for 32-bit ints, 2**63-1
for 64-bit ints) will tell you which of the two possibilities obtains.
In Python 3, int
s (like long
s in Python 2) can take arbitrary sizes up to the amount of available memory; sys.getsizeof
gives you a good indication for any given value, although it does also count some fixed overhead:
>>> import sys
>>> sys.getsizeof(0)
12
>>> sys.getsizeof(2**99)
28
If, as other answers suggests, you’re thinking about some string representation of the integer value, then just take the len
of that representation, be it in base 10 or otherwise!
回答 4
自问这个问题以来已经有好几年了,但是我已经为几种计算整数长度的方法编制了基准。
def libc_size(i):
return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`
def str_size(i):
return len(str(i)) # Length of `i` as a string
def math_size(i):
return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i
def exp_size(i):
return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11
def mod_size(i):
return len("%i" % i) # Uses string modulo instead of str(i)
def fmt_size(i):
return len("{0}".format(i)) # Same as above but str.format
(libc函数需要一些设置,我没有包括在内)
size_exp
感谢Brian Preslopsky,size_str
感谢GeekTantra,以及size_math
John La Rooy
结果如下:
Time for libc size: 1.2204 μs
Time for string size: 309.41 ns
Time for math size: 329.54 ns
Time for exp size: 1.4902 μs
Time for mod size: 249.36 ns
Time for fmt size: 336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)
(免责声明:该函数在输入1到1,000,000上运行)
下面是结果sys.maxsize - 100000
到sys.maxsize
:
Time for libc size: 1.4686 μs
Time for string size: 395.76 ns
Time for math size: 485.94 ns
Time for exp size: 1.6826 μs
Time for mod size: 364.25 ns
Time for fmt size: 453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)
如您所见,mod_size
(len("%i" % i)
)是最快的,比使用速度稍快,str(i)
并且比其他速度快得多。
It’s been several years since this question was asked, but I have compiled a benchmark of several methods to calculate the length of an integer.
def libc_size(i):
return libc.snprintf(buf, 100, c_char_p(b'%i'), i) # equivalent to `return snprintf(buf, 100, "%i", i);`
def str_size(i):
return len(str(i)) # Length of `i` as a string
def math_size(i):
return 1 + math.floor(math.log10(i)) # 1 + floor of log10 of i
def exp_size(i):
return int("{:.5e}".format(i).split("e")[1]) + 1 # e.g. `1e10` -> `10` + 1 -> 11
def mod_size(i):
return len("%i" % i) # Uses string modulo instead of str(i)
def fmt_size(i):
return len("{0}".format(i)) # Same as above but str.format
(the libc function requires some setup, which I haven’t included)
size_exp
is thanks to Brian Preslopsky, size_str
is thanks to GeekTantra, and size_math
is thanks to John La Rooy
Here are the results:
Time for libc size: 1.2204 μs
Time for string size: 309.41 ns
Time for math size: 329.54 ns
Time for exp size: 1.4902 μs
Time for mod size: 249.36 ns
Time for fmt size: 336.63 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.240835x)
+ math_size (1.321577x)
+ fmt_size (1.350007x)
+ libc_size (4.894290x)
+ exp_size (5.976219x)
(Disclaimer: the function is run on inputs 1 to 1,000,000)
Here are the results for sys.maxsize - 100000
to sys.maxsize
:
Time for libc size: 1.4686 μs
Time for string size: 395.76 ns
Time for math size: 485.94 ns
Time for exp size: 1.6826 μs
Time for mod size: 364.25 ns
Time for fmt size: 453.06 ns
In order of speed (fastest first):
+ mod_size (1.000000x)
+ str_size (1.086498x)
+ fmt_size (1.243817x)
+ math_size (1.334066x)
+ libc_size (4.031780x)
+ exp_size (4.619188x)
As you can see, mod_size
(len("%i" % i)
) is the fastest, slightly faster than using str(i)
and significantly faster than others.
回答 5
设数字为,n
则数字的位数n
为:
math.floor(math.log10(n))+1
请注意,这将为+ ve整数<10e15给出正确的答案。除此之外,返回类型的精度限制math.log10
和答案可能会相差1 len(str(n))
。这需要的O(log(n))
时间与对10的幂进行迭代相同。
感谢@SetiVolkylany将我的注意力带到了这个限制上。看起来正确的解决方案在实现细节上有一些警告,这令人惊讶。
Let the number be n
then the number of digits in n
is given by:
math.floor(math.log10(n))+1
Note that this will give correct answers for +ve integers < 10e15. Beyond that the precision limits of the return type of math.log10
kicks in and the answer may be off by 1. I would simply use len(str(n))
beyond that; this requires O(log(n))
time which is same as iterating over powers of 10.
Thanks to @SetiVolkylany for bringing my attenstion to this limitation. Its amazing how seemingly correct solutions have caveats in implementation details.
回答 6
好吧,如果不转换为字符串,我将执行以下操作:
def lenDigits(x):
"""
Assumes int(x)
"""
x = abs(x)
if x < 10:
return 1
return 1 + lenDigits(x / 10)
极简递归FTW
Well, without converting to string I would do something like:
def lenDigits(x):
"""
Assumes int(x)
"""
x = abs(x)
if x < 10:
return 1
return 1 + lenDigits(x / 10)
Minimalist recursion FTW
回答 7
计算不将整数转换为字符串的位数:
x=123
x=abs(x)
i = 0
while x >= 10**i:
i +=1
# i is the number of digits
Count the number of digits w/o convert integer to a string:
x=123
x=abs(x)
i = 0
while x >= 10**i:
i +=1
# i is the number of digits
回答 8
如亲爱的用户@Calvintwr所提到的,该函数math.log10
在范围[-999999999999997,999999999999997]之外的数字中存在问题,在此我们会出现浮点错误。我在JavaScript(Google V8和NodeJS)和C(GNU GCC编译器)上遇到了这个问题,因此'purely mathematically'
这里没有解决方案。
基于这个要点和答案,亲爱的用户@Calvintwr
import math
def get_count_digits(number: int):
"""Return number of digits in a number."""
if number == 0:
return 1
number = abs(number)
if number <= 999999999999997:
return math.floor(math.log10(number)) + 1
count = 0
while number:
count += 1
number //= 10
return count
我测试了长度不超过20(含)的数字,还好。这必须足够,因为在64位系统上,最大长度为整数(19 len(str(sys.maxsize)) == 19
)。
assert get_count_digits(-99999999999999999999) == 20
assert get_count_digits(-10000000000000000000) == 20
assert get_count_digits(-9999999999999999999) == 19
assert get_count_digits(-1000000000000000000) == 19
assert get_count_digits(-999999999999999999) == 18
assert get_count_digits(-100000000000000000) == 18
assert get_count_digits(-99999999999999999) == 17
assert get_count_digits(-10000000000000000) == 17
assert get_count_digits(-9999999999999999) == 16
assert get_count_digits(-1000000000000000) == 16
assert get_count_digits(-999999999999999) == 15
assert get_count_digits(-100000000000000) == 15
assert get_count_digits(-99999999999999) == 14
assert get_count_digits(-10000000000000) == 14
assert get_count_digits(-9999999999999) == 13
assert get_count_digits(-1000000000000) == 13
assert get_count_digits(-999999999999) == 12
assert get_count_digits(-100000000000) == 12
assert get_count_digits(-99999999999) == 11
assert get_count_digits(-10000000000) == 11
assert get_count_digits(-9999999999) == 10
assert get_count_digits(-1000000000) == 10
assert get_count_digits(-999999999) == 9
assert get_count_digits(-100000000) == 9
assert get_count_digits(-99999999) == 8
assert get_count_digits(-10000000) == 8
assert get_count_digits(-9999999) == 7
assert get_count_digits(-1000000) == 7
assert get_count_digits(-999999) == 6
assert get_count_digits(-100000) == 6
assert get_count_digits(-99999) == 5
assert get_count_digits(-10000) == 5
assert get_count_digits(-9999) == 4
assert get_count_digits(-1000) == 4
assert get_count_digits(-999) == 3
assert get_count_digits(-100) == 3
assert get_count_digits(-99) == 2
assert get_count_digits(-10) == 2
assert get_count_digits(-9) == 1
assert get_count_digits(-1) == 1
assert get_count_digits(0) == 1
assert get_count_digits(1) == 1
assert get_count_digits(9) == 1
assert get_count_digits(10) == 2
assert get_count_digits(99) == 2
assert get_count_digits(100) == 3
assert get_count_digits(999) == 3
assert get_count_digits(1000) == 4
assert get_count_digits(9999) == 4
assert get_count_digits(10000) == 5
assert get_count_digits(99999) == 5
assert get_count_digits(100000) == 6
assert get_count_digits(999999) == 6
assert get_count_digits(1000000) == 7
assert get_count_digits(9999999) == 7
assert get_count_digits(10000000) == 8
assert get_count_digits(99999999) == 8
assert get_count_digits(100000000) == 9
assert get_count_digits(999999999) == 9
assert get_count_digits(1000000000) == 10
assert get_count_digits(9999999999) == 10
assert get_count_digits(10000000000) == 11
assert get_count_digits(99999999999) == 11
assert get_count_digits(100000000000) == 12
assert get_count_digits(999999999999) == 12
assert get_count_digits(1000000000000) == 13
assert get_count_digits(9999999999999) == 13
assert get_count_digits(10000000000000) == 14
assert get_count_digits(99999999999999) == 14
assert get_count_digits(100000000000000) == 15
assert get_count_digits(999999999999999) == 15
assert get_count_digits(1000000000000000) == 16
assert get_count_digits(9999999999999999) == 16
assert get_count_digits(10000000000000000) == 17
assert get_count_digits(99999999999999999) == 17
assert get_count_digits(100000000000000000) == 18
assert get_count_digits(999999999999999999) == 18
assert get_count_digits(1000000000000000000) == 19
assert get_count_digits(9999999999999999999) == 19
assert get_count_digits(10000000000000000000) == 20
assert get_count_digits(99999999999999999999) == 20
使用Python 3.5测试的所有代码示例
As mentioned the dear user @Calvintwr, the function math.log10
has problem in a number outside of a range [-999999999999997, 999999999999997], where we get floating point errors. I had this problem with the JavaScript (the Google V8 and the NodeJS) and the C (the GNU GCC compiler), so a 'purely mathematically'
solution is impossible here.
Based on this gist and the answer the dear user @Calvintwr
import math
def get_count_digits(number: int):
"""Return number of digits in a number."""
if number == 0:
return 1
number = abs(number)
if number <= 999999999999997:
return math.floor(math.log10(number)) + 1
count = 0
while number:
count += 1
number //= 10
return count
I tested it on numbers with length up to 20 (inclusive) and all right. It must be enough, because the length max integer number on a 64-bit system is 19 (len(str(sys.maxsize)) == 19
).
assert get_count_digits(-99999999999999999999) == 20
assert get_count_digits(-10000000000000000000) == 20
assert get_count_digits(-9999999999999999999) == 19
assert get_count_digits(-1000000000000000000) == 19
assert get_count_digits(-999999999999999999) == 18
assert get_count_digits(-100000000000000000) == 18
assert get_count_digits(-99999999999999999) == 17
assert get_count_digits(-10000000000000000) == 17
assert get_count_digits(-9999999999999999) == 16
assert get_count_digits(-1000000000000000) == 16
assert get_count_digits(-999999999999999) == 15
assert get_count_digits(-100000000000000) == 15
assert get_count_digits(-99999999999999) == 14
assert get_count_digits(-10000000000000) == 14
assert get_count_digits(-9999999999999) == 13
assert get_count_digits(-1000000000000) == 13
assert get_count_digits(-999999999999) == 12
assert get_count_digits(-100000000000) == 12
assert get_count_digits(-99999999999) == 11
assert get_count_digits(-10000000000) == 11
assert get_count_digits(-9999999999) == 10
assert get_count_digits(-1000000000) == 10
assert get_count_digits(-999999999) == 9
assert get_count_digits(-100000000) == 9
assert get_count_digits(-99999999) == 8
assert get_count_digits(-10000000) == 8
assert get_count_digits(-9999999) == 7
assert get_count_digits(-1000000) == 7
assert get_count_digits(-999999) == 6
assert get_count_digits(-100000) == 6
assert get_count_digits(-99999) == 5
assert get_count_digits(-10000) == 5
assert get_count_digits(-9999) == 4
assert get_count_digits(-1000) == 4
assert get_count_digits(-999) == 3
assert get_count_digits(-100) == 3
assert get_count_digits(-99) == 2
assert get_count_digits(-10) == 2
assert get_count_digits(-9) == 1
assert get_count_digits(-1) == 1
assert get_count_digits(0) == 1
assert get_count_digits(1) == 1
assert get_count_digits(9) == 1
assert get_count_digits(10) == 2
assert get_count_digits(99) == 2
assert get_count_digits(100) == 3
assert get_count_digits(999) == 3
assert get_count_digits(1000) == 4
assert get_count_digits(9999) == 4
assert get_count_digits(10000) == 5
assert get_count_digits(99999) == 5
assert get_count_digits(100000) == 6
assert get_count_digits(999999) == 6
assert get_count_digits(1000000) == 7
assert get_count_digits(9999999) == 7
assert get_count_digits(10000000) == 8
assert get_count_digits(99999999) == 8
assert get_count_digits(100000000) == 9
assert get_count_digits(999999999) == 9
assert get_count_digits(1000000000) == 10
assert get_count_digits(9999999999) == 10
assert get_count_digits(10000000000) == 11
assert get_count_digits(99999999999) == 11
assert get_count_digits(100000000000) == 12
assert get_count_digits(999999999999) == 12
assert get_count_digits(1000000000000) == 13
assert get_count_digits(9999999999999) == 13
assert get_count_digits(10000000000000) == 14
assert get_count_digits(99999999999999) == 14
assert get_count_digits(100000000000000) == 15
assert get_count_digits(999999999999999) == 15
assert get_count_digits(1000000000000000) == 16
assert get_count_digits(9999999999999999) == 16
assert get_count_digits(10000000000000000) == 17
assert get_count_digits(99999999999999999) == 17
assert get_count_digits(100000000000000000) == 18
assert get_count_digits(999999999999999999) == 18
assert get_count_digits(1000000000000000000) == 19
assert get_count_digits(9999999999999999999) == 19
assert get_count_digits(10000000000000000000) == 20
assert get_count_digits(99999999999999999999) == 20
All example of codes tested with the Python 3.5
回答 9
对于后代来说,毫无疑问,这是迄今为止最慢的解决方案:
def num_digits(num, number_of_calls=1):
"Returns the number of digits of an integer num."
if num == 0 or num == -1:
return 1 if number_of_calls == 1 else 0
else:
return 1 + num_digits(num/10, number_of_calls+1)
For posterity, no doubt by far the slowest solution to this problem:
def num_digits(num, number_of_calls=1):
"Returns the number of digits of an integer num."
if num == 0 or num == -1:
return 1 if number_of_calls == 1 else 0
else:
return 1 + num_digits(num/10, number_of_calls+1)
回答 10
from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1
from math import log10
digits = lambda n: ((n==0) and 1) or int(log10(abs(n)))+1
回答 11
假设您要求存储的最大数字整数,则该值取决于实现。我建议您在使用python时不要以这种方式思考。无论如何,可以在python’integer’中存储很大的值。记住,Python使用鸭子类型!
编辑:
我在澄清询问者要求数字位数之前给出了答案。为此,我同意接受的答案所建议的方法。没有什么可添加的!
Assuming you are asking for the largest number you can store in an integer, the value is implementation dependent. I suggest that you don’t think in that way when using python. In any case, quite a large value can be stored in a python ‘integer’. Remember, Python uses duck typing!
Edit:
I gave my answer before the clarification that the asker wanted the number of digits. For that, I agree with the method suggested by the accepted answer. Nothing more to add!
回答 12
def length(i):
return len(str(i))
def length(i):
return len(str(i))
回答 13
可以使用以下方法快速完成整数操作:
len(str(abs(1234567890)))
它获取绝对值“ 1234567890”的字符串的长度
abs
返回没有任何负数的数字(仅数字的大小),str
将其转换/转换为字符串,并len
返回该字符串的字符串长度。
如果您希望它适用于浮点数,则可以使用以下两种方法之一:
# Ignore all after decimal place
len(str(abs(0.1234567890)).split(".")[0])
# Ignore just the decimal place
len(str(abs(0.1234567890)))-1
备查。
It can be done for integers quickly by using:
len(str(abs(1234567890)))
Which gets the length of the string of the absolute value of “1234567890”
abs
returns the number WITHOUT any negatives (only the magnitude of the number), str
casts/converts it to a string and len
returns the string length of that string.
If you want it to work for floats, you can use either of the following:
# Ignore all after decimal place
len(str(abs(0.1234567890)).split(".")[0])
# Ignore just the decimal place
len(str(abs(0.1234567890)))-1
For future reference.
回答 14
以科学记数法表示格式并得出指数:
int("{:.5e}".format(1000000).split("e")[1]) + 1
我不知道速度,但这很简单。
请注意,小数点后的有效位数(如果将科学计数的小数部分四舍五入到另一个数字,则“ .5e”中的“ 5”可能是一个问题。我将其设置为任意大,但可以反映您知道的最大数字的长度。
Format in scientific notation and pluck off the exponent:
int("{:.5e}".format(1000000).split("e")[1]) + 1
I don’t know about speed, but it’s simple.
Please note the number of significant digits after the decimal (the “5” in the “.5e” can be an issue if it rounds up the decimal part of the scientific notation to another digit. I set it arbitrarily large, but could reflect the length of the largest number you know about.
回答 15
def count_digit(number):
if number >= 10:
count = 2
else:
count = 1
while number//10 > 9:
count += 1
number = number//10
return count
def count_digit(number):
if number >= 10:
count = 2
else:
count = 1
while number//10 > 9:
count += 1
number = number//10
return count
回答 16
如果必须要求用户输入内容,然后必须计算有多少个数字,则可以按照以下步骤操作:
count_number = input('Please enter a number\t')
print(len(count_number))
注意:切勿将int用作用户输入。
If you have to ask an user to give input and then you have to count how many numbers are there then you can follow this:
count_number = input('Please enter a number\t')
print(len(count_number))
Note: Never take an int as user input.
回答 17
def digits(n)
count = 0
if n == 0:
return 1
while (n >= 10**count):
count += 1
n += n%10
return count
print(digits(25)) # Should print 2
print(digits(144)) # Should print 3
print(digits(1000)) # Should print 4
print(digits(0)) # Should print 1
def digits(n)
count = 0
if n == 0:
return 1
if n < 0:
n *= -1
while (n >= 10**count):
count += 1
n += n%10
return count
print(digits(25)) # Should print 2
print(digits(144)) # Should print 3
print(digits(1000)) # Should print 4
print(digits(0)) # Should print 1
回答 18
我的代码与此相同;我使用了log10方法:
from math import *
def digit_count(数字):
if number>1 and round(log10(number))>=log10(number) and number%10!=0 :
return round(log10(number))
elif number>1 and round(log10(number))<log10(number) and number%10!=0:
return round(log10(number))+1
elif number%10==0 and number!=0:
return int(log10(number)+1)
elif number==1 or number==0:
return 1
我必须指定1和0的情况,因为log10(1)= 0和log10(0)= ND,因此不满足提到的条件。但是,此代码仅适用于整数。
My code for the same is as follows;i have used the log10 method:
from math import *
def digit_count(number):
if number>1 and round(log10(number))>=log10(number) and number%10!=0 :
return round(log10(number))
elif number>1 and round(log10(number))<log10(number) and number%10!=0:
return round(log10(number))+1
elif number%10==0 and number!=0:
return int(log10(number)+1)
elif number==1 or number==0:
return 1
I had to specify in case of 1 and 0 because log10(1)=0 and log10(0)=ND and hence the condition mentioned isn’t satisfied. However, this code works only for whole numbers.
回答 19
这是一个笨重但快速的版本:
def nbdigit ( x ):
if x >= 10000000000000000 : # 17 -
return len( str( x ))
if x < 100000000 : # 1 - 8
if x < 10000 : # 1 - 4
if x < 100 : return (x >= 10)+1
else : return (x >= 1000)+3
else: # 5 - 8
if x < 1000000 : return (x >= 100000)+5
else : return (x >= 10000000)+7
else: # 9 - 16
if x < 1000000000000 : # 9 - 12
if x < 10000000000 : return (x >= 1000000000)+9
else : return (x >= 100000000000)+11
else: # 13 - 16
if x < 100000000000000 : return (x >= 10000000000000)+13
else : return (x >= 1000000000000000)+15
对于不太大的数字,只有5个比较。在我的计算机上,它比该math.log10
版本快30%,比该版本快5%len( str())
。好吧…如果您不疯狂使用它,那么没有吸引力。
这是我用来测试/测量功能的一组数字:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
注意:它不管理负数,但适应很容易…
Here is a bulky but fast version :
def nbdigit ( x ):
if x >= 10000000000000000 : # 17 -
return len( str( x ))
if x < 100000000 : # 1 - 8
if x < 10000 : # 1 - 4
if x < 100 : return (x >= 10)+1
else : return (x >= 1000)+3
else: # 5 - 8
if x < 1000000 : return (x >= 100000)+5
else : return (x >= 10000000)+7
else: # 9 - 16
if x < 1000000000000 : # 9 - 12
if x < 10000000000 : return (x >= 1000000000)+9
else : return (x >= 100000000000)+11
else: # 13 - 16
if x < 100000000000000 : return (x >= 10000000000000)+13
else : return (x >= 1000000000000000)+15
Only 5 comparisons for not too big numbers.
On my computer it is about 30% faster than the math.log10
version and 5% faster than the len( str())
one.
Ok… no so attractive if you don’t use it furiously.
And here is the set of numbers I used to test/measure my function:
n = [ int( (i+1)**( 17/7. )) for i in xrange( 1000000 )] + [0,10**16-1,10**16,10**16+1]
NB: it does not manage negative numbers, but the adaptation is easy…
回答 20
>>> a=12345
>>> a.__str__().__len__()
5
>>> a=12345
>>> a.__str__().__len__()
5