Python字典:获取键列表的值列表

问题:Python字典:获取键列表的值列表

是否有内置/快速的方法来使用字典的键列表来获取对应项的列表?

例如,我有:

>>> mydict = {'one': 1, 'two': 2, 'three': 3}
>>> mykeys = ['three', 'one']

如何使用mykeys字典中的相应值作为列表?

>>> mydict.WHAT_GOES_HERE(mykeys)
[3, 1]

Is there a built-in/quick way to use a list of keys to a dictionary to get a list of corresponding items?

For instance I have:

>>> mydict = {'one': 1, 'two': 2, 'three': 3}
>>> mykeys = ['three', 'one']

How can I use mykeys to get the corresponding values in the dictionary as a list?

>>> mydict.WHAT_GOES_HERE(mykeys)
[3, 1]

回答 0

列表理解似乎是执行此操作的好方法:

>>> [mydict[x] for x in mykeys]
[3, 1]

A list comprehension seems to be a good way to do this:

>>> [mydict[x] for x in mykeys]
[3, 1]

回答 1

除list-comp外,还有几种其他方法:

  • 如果找不到密钥,则生成列表并引发异常: map(mydict.__getitem__, mykeys)
  • 带有Noneif键的构建列表:map(mydict.get, mykeys)

另外,使用operator.itemgetter可以返回一个元组:

from operator import itemgetter
myvalues = itemgetter(*mykeys)(mydict)
# use `list(...)` if list is required

注意:在Python3中,map返回迭代器而不是列表。使用list(map(...))了列表。

A couple of other ways than list-comp:

  • Build list and throw exception if key not found: map(mydict.__getitem__, mykeys)
  • Build list with None if key not found: map(mydict.get, mykeys)

Alternatively, using operator.itemgetter can return a tuple:

from operator import itemgetter
myvalues = itemgetter(*mykeys)(mydict)
# use `list(...)` if list is required

Note: in Python3, map returns an iterator rather than a list. Use list(map(...)) for a list.


回答 2

速度比较:

Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Dec  7 2015, 14:10:42) [MSC v.1500 64 bit (AMD64)] on win32
In[1]: l = [0,1,2,3,2,3,1,2,0]
In[2]: m = {0:10, 1:11, 2:12, 3:13}
In[3]: %timeit [m[_] for _ in l]  # list comprehension
1000000 loops, best of 3: 762 ns per loop
In[4]: %timeit map(lambda _: m[_], l)  # using 'map'
1000000 loops, best of 3: 1.66 µs per loop
In[5]: %timeit list(m[_] for _ in l)  # a generator expression passed to a list constructor.
1000000 loops, best of 3: 1.65 µs per loop
In[6]: %timeit map(m.__getitem__, l)
The slowest run took 4.01 times longer than the fastest. This could mean that an intermediate result is being cached 
1000000 loops, best of 3: 853 ns per loop
In[7]: %timeit map(m.get, l)
1000000 loops, best of 3: 908 ns per loop
In[33]: from operator import itemgetter
In[34]: %timeit list(itemgetter(*l)(m))
The slowest run took 9.26 times longer than the fastest. This could mean that an intermediate result is being cached 
1000000 loops, best of 3: 739 ns per loop

因此,列表理解和itemgetter是最快的方法。

更新:对于大型随机列表和地图,我得到了一些不同的结果:

Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Dec  7 2015, 14:10:42) [MSC v.1500 64 bit (AMD64)] on win32
In[2]: import numpy.random as nprnd
l = nprnd.randint(1000, size=10000)
m = dict([(_, nprnd.rand()) for _ in range(1000)])
from operator import itemgetter
import operator
f = operator.itemgetter(*l)
%timeit f(m)
%timeit list(itemgetter(*l)(m))
%timeit [m[_] for _ in l]  # list comprehension
%timeit map(m.__getitem__, l)
%timeit list(m[_] for _ in l)  # a generator expression passed to a list constructor.
%timeit map(m.get, l)
%timeit map(lambda _: m[_], l)
1000 loops, best of 3: 1.14 ms per loop
1000 loops, best of 3: 1.68 ms per loop
100 loops, best of 3: 2 ms per loop
100 loops, best of 3: 2.05 ms per loop
100 loops, best of 3: 2.19 ms per loop
100 loops, best of 3: 2.53 ms per loop
100 loops, best of 3: 2.9 ms per loop

因此,在这种情况下,明确的获胜者是f = operator.itemgetter(*l); f(m),而明确的局外人:map(lambda _: m[_], l)

适用于Python 3.6.4的更新:

import numpy.random as nprnd
l = nprnd.randint(1000, size=10000)
m = dict([(_, nprnd.rand()) for _ in range(1000)])
from operator import itemgetter
import operator
f = operator.itemgetter(*l)
%timeit f(m)
%timeit list(itemgetter(*l)(m))
%timeit [m[_] for _ in l]  # list comprehension
%timeit list(map(m.__getitem__, l))
%timeit list(m[_] for _ in l)  # a generator expression passed to a list constructor.
%timeit list(map(m.get, l))
%timeit list(map(lambda _: m[_], l)
1.66 ms ± 74.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.1 ms ± 93.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.58 ms ± 88.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.36 ms ± 60.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.98 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.7 ms ± 284 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.14 ms ± 62.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

因此,Python 3.6.4的结果几乎相同。

A little speed comparison:

Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Dec  7 2015, 14:10:42) [MSC v.1500 64 bit (AMD64)] on win32
In[1]: l = [0,1,2,3,2,3,1,2,0]
In[2]: m = {0:10, 1:11, 2:12, 3:13}
In[3]: %timeit [m[_] for _ in l]  # list comprehension
1000000 loops, best of 3: 762 ns per loop
In[4]: %timeit map(lambda _: m[_], l)  # using 'map'
1000000 loops, best of 3: 1.66 µs per loop
In[5]: %timeit list(m[_] for _ in l)  # a generator expression passed to a list constructor.
1000000 loops, best of 3: 1.65 µs per loop
In[6]: %timeit map(m.__getitem__, l)
The slowest run took 4.01 times longer than the fastest. This could mean that an intermediate result is being cached 
1000000 loops, best of 3: 853 ns per loop
In[7]: %timeit map(m.get, l)
1000000 loops, best of 3: 908 ns per loop
In[33]: from operator import itemgetter
In[34]: %timeit list(itemgetter(*l)(m))
The slowest run took 9.26 times longer than the fastest. This could mean that an intermediate result is being cached 
1000000 loops, best of 3: 739 ns per loop

So list comprehension and itemgetter are the fastest ways to do this.

UPDATE: For large random lists and maps I had a bit different results:

Python 2.7.11 |Anaconda 2.4.1 (64-bit)| (default, Dec  7 2015, 14:10:42) [MSC v.1500 64 bit (AMD64)] on win32
In[2]: import numpy.random as nprnd
l = nprnd.randint(1000, size=10000)
m = dict([(_, nprnd.rand()) for _ in range(1000)])
from operator import itemgetter
import operator
f = operator.itemgetter(*l)
%timeit f(m)
%timeit list(itemgetter(*l)(m))
%timeit [m[_] for _ in l]  # list comprehension
%timeit map(m.__getitem__, l)
%timeit list(m[_] for _ in l)  # a generator expression passed to a list constructor.
%timeit map(m.get, l)
%timeit map(lambda _: m[_], l)
1000 loops, best of 3: 1.14 ms per loop
1000 loops, best of 3: 1.68 ms per loop
100 loops, best of 3: 2 ms per loop
100 loops, best of 3: 2.05 ms per loop
100 loops, best of 3: 2.19 ms per loop
100 loops, best of 3: 2.53 ms per loop
100 loops, best of 3: 2.9 ms per loop

So in this case the clear winner is f = operator.itemgetter(*l); f(m), and clear outsider: map(lambda _: m[_], l).

UPDATE for Python 3.6.4:

import numpy.random as nprnd
l = nprnd.randint(1000, size=10000)
m = dict([(_, nprnd.rand()) for _ in range(1000)])
from operator import itemgetter
import operator
f = operator.itemgetter(*l)
%timeit f(m)
%timeit list(itemgetter(*l)(m))
%timeit [m[_] for _ in l]  # list comprehension
%timeit list(map(m.__getitem__, l))
%timeit list(m[_] for _ in l)  # a generator expression passed to a list constructor.
%timeit list(map(m.get, l))
%timeit list(map(lambda _: m[_], l)
1.66 ms ± 74.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.1 ms ± 93.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.58 ms ± 88.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.36 ms ± 60.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.98 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.7 ms ± 284 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
3.14 ms ± 62.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

So, results for Python 3.6.4 is almost the same.


回答 3

这是三种方式。

KeyError未找到密钥时引发:

result = [mapping[k] for k in iterable]

缺少键的默认值。

result = [mapping.get(k, default_value) for k in iterable]

跳过丢失的键。

result = [mapping[k] for k in iterable if k in mapping]

Here are three ways.

Raising KeyError when key is not found:

result = [mapping[k] for k in iterable]

Default values for missing keys.

result = [mapping.get(k, default_value) for k in iterable]

Skipping missing keys.

result = [mapping[k] for k in iterable if k in mapping]

回答 4

试试这个:

mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one','ten']
newList=[mydict[k] for k in mykeys if k in mydict]
print newList
[3, 1]

Try This:

mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one','ten']
newList=[mydict[k] for k in mykeys if k in mydict]
print newList
[3, 1]

回答 5

试试这个:

mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one'] # if there are many keys, use a set

[mydict[k] for k in mykeys]
=> [3, 1]

Try this:

mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one'] # if there are many keys, use a set

[mydict[k] for k in mykeys]
=> [3, 1]

回答 6

new_dict = {x: v for x, v in mydict.items() if x in mykeys}
new_dict = {x: v for x, v in mydict.items() if x in mykeys}

回答 7

Pandas非常优雅地做到了这一点,尽管通常对列表的理解在技术上总是Python风格的。我现在没有时间进行速度比较(我稍后会再放入):

import pandas as pd
mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one']
temp_df = pd.DataFrame().append(mydict)
# You can export DataFrames to a number of formats, using a list here. 
temp_df[mykeys].values[0]
# Returns: array([ 3.,  1.])

# If you want a dict then use this instead:
# temp_df[mykeys].to_dict(orient='records')[0]
# Returns: {'one': 1.0, 'three': 3.0}

Pandas does this very elegantly, though ofc list comprehensions will always be more technically Pythonic. I don’t have time to put in a speed comparison right now (I’ll come back later and put it in):

import pandas as pd
mydict = {'one': 1, 'two': 2, 'three': 3}
mykeys = ['three', 'one']
temp_df = pd.DataFrame().append(mydict)
# You can export DataFrames to a number of formats, using a list here. 
temp_df[mykeys].values[0]
# Returns: array([ 3.,  1.])

# If you want a dict then use this instead:
# temp_df[mykeys].to_dict(orient='records')[0]
# Returns: {'one': 1.0, 'three': 3.0}

回答 8

或仅仅是mydict.keys()那是对字典的内置方法调用。也探索mydict.values()mydict.items()

//哦,OP帖子让我感到困惑。

Or just mydict.keys() That’s a builtin method call for dictionaries. Also explore mydict.values() and mydict.items().

//Ah, OP post confused me.


回答 9

关闭 Python之后:从给定顺序的字典值创建列表的有效方法

检索密钥而不建立列表:

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import collections


class DictListProxy(collections.Sequence):
    def __init__(self, klist, kdict, *args, **kwargs):
        super(DictListProxy, self).__init__(*args, **kwargs)
        self.klist = klist
        self.kdict = kdict

    def __len__(self):
        return len(self.klist)

    def __getitem__(self, key):
        return self.kdict[self.klist[key]]


myDict = {'age': 'value1', 'size': 'value2', 'weigth': 'value3'}
order_list = ['age', 'weigth', 'size']

dlp = DictListProxy(order_list, myDict)

print(','.join(dlp))
print()
print(dlp[1])

输出:

value1,value3,value2

value3

哪个与列表给出的顺序匹配

Following closure of Python: efficient way to create a list from dict values with a given order

Retrieving the keys without building the list:

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import collections


class DictListProxy(collections.Sequence):
    def __init__(self, klist, kdict, *args, **kwargs):
        super(DictListProxy, self).__init__(*args, **kwargs)
        self.klist = klist
        self.kdict = kdict

    def __len__(self):
        return len(self.klist)

    def __getitem__(self, key):
        return self.kdict[self.klist[key]]


myDict = {'age': 'value1', 'size': 'value2', 'weigth': 'value3'}
order_list = ['age', 'weigth', 'size']

dlp = DictListProxy(order_list, myDict)

print(','.join(dlp))
print()
print(dlp[1])

The output:

value1,value3,value2

value3

Which matches the order given by the list


回答 10

reduce(lambda x,y: mydict.get(y) and x.append(mydict[y]) or x, mykeys,[])

万一有字典中没有的键。

reduce(lambda x,y: mydict.get(y) and x.append(mydict[y]) or x, mykeys,[])

incase there are keys not in dict.