pytorch中的模型摘要

问题:pytorch中的模型摘要

有什么办法,我可以像在Keras中的model.summary()方法那样在PyTorch中打印模型的摘要,如下所示?

Model Summary:
____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 1, 15, 27)     0                                            
____________________________________________________________________________________________________
convolution2d_1 (Convolution2D)  (None, 8, 15, 27)     872         input_1[0][0]                    
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D)    (None, 8, 7, 27)      0           convolution2d_1[0][0]            
____________________________________________________________________________________________________
flatten_1 (Flatten)              (None, 1512)          0           maxpooling2d_1[0][0]             
____________________________________________________________________________________________________
dense_1 (Dense)                  (None, 1)             1513        flatten_1[0][0]                  
====================================================================================================
Total params: 2,385
Trainable params: 2,385
Non-trainable params: 0

Is there any way, I can print the summary of a model in PyTorch like model.summary() method does in Keras as follows?

Model Summary:
____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 1, 15, 27)     0                                            
____________________________________________________________________________________________________
convolution2d_1 (Convolution2D)  (None, 8, 15, 27)     872         input_1[0][0]                    
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D)    (None, 8, 7, 27)      0           convolution2d_1[0][0]            
____________________________________________________________________________________________________
flatten_1 (Flatten)              (None, 1512)          0           maxpooling2d_1[0][0]             
____________________________________________________________________________________________________
dense_1 (Dense)                  (None, 1)             1513        flatten_1[0][0]                  
====================================================================================================
Total params: 2,385
Trainable params: 2,385
Non-trainable params: 0

回答 0

虽然您不会像Keras的模型那样获得关于模型的详细信息。

例如:

from torchvision import models
model = models.vgg16()
print(model)

在这种情况下,输出将如下所示:

VGG (
  (features): Sequential (
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU (inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU (inplace)
    (4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU (inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU (inplace)
    (9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU (inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU (inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU (inplace)
    (16): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU (inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU (inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU (inplace)
    (23): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU (inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU (inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU (inplace)
    (30): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
  )
  (classifier): Sequential (
    (0): Dropout (p = 0.5)
    (1): Linear (25088 -> 4096)
    (2): ReLU (inplace)
    (3): Dropout (p = 0.5)
    (4): Linear (4096 -> 4096)
    (5): ReLU (inplace)
    (6): Linear (4096 -> 1000)
  )
)

Kashyap所述,现在您可以使用该state_dict方法来获取不同图层的权重。但是,使用此层列表可能会提供更多指导,即创建一个辅助函数来获得类似模型摘要的Keras!希望这可以帮助!

While you will not get as detailed information about the model as in Keras’ model.summary, simply printing the model will give you some idea about the different layers involved and their specifications.

For instance:

from torchvision import models
model = models.vgg16()
print(model)

The output in this case would be something as follows:

VGG (
  (features): Sequential (
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU (inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU (inplace)
    (4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU (inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU (inplace)
    (9): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU (inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU (inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU (inplace)
    (16): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU (inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU (inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU (inplace)
    (23): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU (inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU (inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU (inplace)
    (30): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
  )
  (classifier): Sequential (
    (0): Dropout (p = 0.5)
    (1): Linear (25088 -> 4096)
    (2): ReLU (inplace)
    (3): Dropout (p = 0.5)
    (4): Linear (4096 -> 4096)
    (5): ReLU (inplace)
    (6): Linear (4096 -> 1000)
  )
)

Now you could, as mentioned by Kashyap, use the state_dict method to get the weights of the different layers. But using this listing of the layers would perhaps provide more direction is creating a helper function to get that Keras like model summary! Hope this helps!


回答 1

是的,您可以使用pytorch-summary包获得准确的Keras表示形式。

VGG16的示例

from torchvision import models
from torchsummary import summary

vgg = models.vgg16()
summary(vgg, (3, 224, 224))

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
          Dropout-34                 [-1, 4096]               0
           Linear-35                 [-1, 4096]      16,781,312
             ReLU-36                 [-1, 4096]               0
          Dropout-37                 [-1, 4096]               0
           Linear-38                 [-1, 1000]       4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------

Yes, you can get exact Keras representation, using pytorch-summary package.

Example for VGG16

from torchvision import models
from torchsummary import summary

vgg = models.vgg16()
summary(vgg, (3, 224, 224))

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 224, 224]           1,792
              ReLU-2         [-1, 64, 224, 224]               0
            Conv2d-3         [-1, 64, 224, 224]          36,928
              ReLU-4         [-1, 64, 224, 224]               0
         MaxPool2d-5         [-1, 64, 112, 112]               0
            Conv2d-6        [-1, 128, 112, 112]          73,856
              ReLU-7        [-1, 128, 112, 112]               0
            Conv2d-8        [-1, 128, 112, 112]         147,584
              ReLU-9        [-1, 128, 112, 112]               0
        MaxPool2d-10          [-1, 128, 56, 56]               0
           Conv2d-11          [-1, 256, 56, 56]         295,168
             ReLU-12          [-1, 256, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]         590,080
             ReLU-14          [-1, 256, 56, 56]               0
           Conv2d-15          [-1, 256, 56, 56]         590,080
             ReLU-16          [-1, 256, 56, 56]               0
        MaxPool2d-17          [-1, 256, 28, 28]               0
           Conv2d-18          [-1, 512, 28, 28]       1,180,160
             ReLU-19          [-1, 512, 28, 28]               0
           Conv2d-20          [-1, 512, 28, 28]       2,359,808
             ReLU-21          [-1, 512, 28, 28]               0
           Conv2d-22          [-1, 512, 28, 28]       2,359,808
             ReLU-23          [-1, 512, 28, 28]               0
        MaxPool2d-24          [-1, 512, 14, 14]               0
           Conv2d-25          [-1, 512, 14, 14]       2,359,808
             ReLU-26          [-1, 512, 14, 14]               0
           Conv2d-27          [-1, 512, 14, 14]       2,359,808
             ReLU-28          [-1, 512, 14, 14]               0
           Conv2d-29          [-1, 512, 14, 14]       2,359,808
             ReLU-30          [-1, 512, 14, 14]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
           Linear-32                 [-1, 4096]     102,764,544
             ReLU-33                 [-1, 4096]               0
          Dropout-34                 [-1, 4096]               0
           Linear-35                 [-1, 4096]      16,781,312
             ReLU-36                 [-1, 4096]               0
          Dropout-37                 [-1, 4096]               0
           Linear-38                 [-1, 1000]       4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 218.59
Params size (MB): 527.79
Estimated Total Size (MB): 746.96
----------------------------------------------------------------

回答 2

为了使用torchsummary类型:

from torchsummary import summary

如果没有,请先安装。

pip install torchsummary 

然后您可以尝试一下,但是请注意某些原因,除非我将模型设置为cuda,否则它将无法正常工作alexnet.cuda

from torchsummary import summary
help(summary)
import torchvision.models as models
alexnet = models.alexnet(pretrained=False)
alexnet.cuda()
summary(alexnet, (3, 224, 224))
print(alexnet)

summary必须输入尺寸和批量大小设置为-1任何批量大小,我们提供的意思。

如果设置,summary(alexnet, (3, 224, 224), 32)则使用bs=32

summary(model, input_size, batch_size=-1, device='cuda')

出:

Help on function summary in module torchsummary.torchsummary:

summary(model, input_size, batch_size=-1, device='cuda')

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [32, 64, 55, 55]          23,296
              ReLU-2           [32, 64, 55, 55]               0
         MaxPool2d-3           [32, 64, 27, 27]               0
            Conv2d-4          [32, 192, 27, 27]         307,392
              ReLU-5          [32, 192, 27, 27]               0
         MaxPool2d-6          [32, 192, 13, 13]               0
            Conv2d-7          [32, 384, 13, 13]         663,936
              ReLU-8          [32, 384, 13, 13]               0
            Conv2d-9          [32, 256, 13, 13]         884,992
             ReLU-10          [32, 256, 13, 13]               0
           Conv2d-11          [32, 256, 13, 13]         590,080
             ReLU-12          [32, 256, 13, 13]               0
        MaxPool2d-13            [32, 256, 6, 6]               0
AdaptiveAvgPool2d-14            [32, 256, 6, 6]               0
          Dropout-15                 [32, 9216]               0
           Linear-16                 [32, 4096]      37,752,832
             ReLU-17                 [32, 4096]               0
          Dropout-18                 [32, 4096]               0
           Linear-19                 [32, 4096]      16,781,312
             ReLU-20                 [32, 4096]               0
           Linear-21                 [32, 1000]       4,097,000
================================================================
Total params: 61,100,840
Trainable params: 61,100,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 18.38
Forward/backward pass size (MB): 268.12
Params size (MB): 233.08
Estimated Total Size (MB): 519.58
----------------------------------------------------------------
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace)
    (3): Dropout(p=0.5)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

In order to use torchsummary type:

from torchsummary import summary

Install it first if you don’t have it.

pip install torchsummary 

And then you can try it, but note from some reason it is not working unless I set model to cuda alexnet.cuda:

from torchsummary import summary
help(summary)
import torchvision.models as models
alexnet = models.alexnet(pretrained=False)
alexnet.cuda()
summary(alexnet, (3, 224, 224))
print(alexnet)

The summary must take the input size and batch size is set to -1 meaning any batch size we provide.

If we set summary(alexnet, (3, 224, 224), 32) this means use the bs=32.

summary(model, input_size, batch_size=-1, device='cuda')

Out:

Help on function summary in module torchsummary.torchsummary:

summary(model, input_size, batch_size=-1, device='cuda')

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [32, 64, 55, 55]          23,296
              ReLU-2           [32, 64, 55, 55]               0
         MaxPool2d-3           [32, 64, 27, 27]               0
            Conv2d-4          [32, 192, 27, 27]         307,392
              ReLU-5          [32, 192, 27, 27]               0
         MaxPool2d-6          [32, 192, 13, 13]               0
            Conv2d-7          [32, 384, 13, 13]         663,936
              ReLU-8          [32, 384, 13, 13]               0
            Conv2d-9          [32, 256, 13, 13]         884,992
             ReLU-10          [32, 256, 13, 13]               0
           Conv2d-11          [32, 256, 13, 13]         590,080
             ReLU-12          [32, 256, 13, 13]               0
        MaxPool2d-13            [32, 256, 6, 6]               0
AdaptiveAvgPool2d-14            [32, 256, 6, 6]               0
          Dropout-15                 [32, 9216]               0
           Linear-16                 [32, 4096]      37,752,832
             ReLU-17                 [32, 4096]               0
          Dropout-18                 [32, 4096]               0
           Linear-19                 [32, 4096]      16,781,312
             ReLU-20                 [32, 4096]               0
           Linear-21                 [32, 1000]       4,097,000
================================================================
Total params: 61,100,840
Trainable params: 61,100,840
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 18.38
Forward/backward pass size (MB): 268.12
Params size (MB): 233.08
Estimated Total Size (MB): 519.58
----------------------------------------------------------------
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace)
    (3): Dropout(p=0.5)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)

回答 3

这将显示模型的权重和参数(但不显示输出形状)。

from torch.nn.modules.module import _addindent
import torch
import numpy as np
def torch_summarize(model, show_weights=True, show_parameters=True):
    """Summarizes torch model by showing trainable parameters and weights."""
    tmpstr = model.__class__.__name__ + ' (\n'
    for key, module in model._modules.items():
        # if it contains layers let call it recursively to get params and weights
        if type(module) in [
            torch.nn.modules.container.Container,
            torch.nn.modules.container.Sequential
        ]:
            modstr = torch_summarize(module)
        else:
            modstr = module.__repr__()
        modstr = _addindent(modstr, 2)

        params = sum([np.prod(p.size()) for p in module.parameters()])
        weights = tuple([tuple(p.size()) for p in module.parameters()])

        tmpstr += '  (' + key + '): ' + modstr 
        if show_weights:
            tmpstr += ', weights={}'.format(weights)
        if show_parameters:
            tmpstr +=  ', parameters={}'.format(params)
        tmpstr += '\n'   

    tmpstr = tmpstr + ')'
    return tmpstr

# Test
import torchvision.models as models
model = models.alexnet()
print(torch_summarize(model))

# # Output
# AlexNet (
#   (features): Sequential (
#     (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)), weights=((64, 3, 11, 11), (64,)), parameters=23296
#     (1): ReLU (inplace), weights=(), parameters=0
#     (2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#     (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)), weights=((192, 64, 5, 5), (192,)), parameters=307392
#     (4): ReLU (inplace), weights=(), parameters=0
#     (5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#     (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((384, 192, 3, 3), (384,)), parameters=663936
#     (7): ReLU (inplace), weights=(), parameters=0
#     (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 384, 3, 3), (256,)), parameters=884992
#     (9): ReLU (inplace), weights=(), parameters=0
#     (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 256, 3, 3), (256,)), parameters=590080
#     (11): ReLU (inplace), weights=(), parameters=0
#     (12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#   ), weights=((64, 3, 11, 11), (64,), (192, 64, 5, 5), (192,), (384, 192, 3, 3), (384,), (256, 384, 3, 3), (256,), (256, 256, 3, 3), (256,)), parameters=2469696
#   (classifier): Sequential (
#     (0): Dropout (p = 0.5), weights=(), parameters=0
#     (1): Linear (9216 -> 4096), weights=((4096, 9216), (4096,)), parameters=37752832
#     (2): ReLU (inplace), weights=(), parameters=0
#     (3): Dropout (p = 0.5), weights=(), parameters=0
#     (4): Linear (4096 -> 4096), weights=((4096, 4096), (4096,)), parameters=16781312
#     (5): ReLU (inplace), weights=(), parameters=0
#     (6): Linear (4096 -> 1000), weights=((1000, 4096), (1000,)), parameters=4097000
#   ), weights=((4096, 9216), (4096,), (4096, 4096), (4096,), (1000, 4096), (1000,)), parameters=58631144
# )

编辑:isaykatsman有一个pytorch PR来添加一个model.summary()完全类似于keras https://github.com/pytorch/pytorch/pull/3043/files的文件

This will show a model’s weights and parameters (but not output shape).

from torch.nn.modules.module import _addindent
import torch
import numpy as np
def torch_summarize(model, show_weights=True, show_parameters=True):
    """Summarizes torch model by showing trainable parameters and weights."""
    tmpstr = model.__class__.__name__ + ' (\n'
    for key, module in model._modules.items():
        # if it contains layers let call it recursively to get params and weights
        if type(module) in [
            torch.nn.modules.container.Container,
            torch.nn.modules.container.Sequential
        ]:
            modstr = torch_summarize(module)
        else:
            modstr = module.__repr__()
        modstr = _addindent(modstr, 2)

        params = sum([np.prod(p.size()) for p in module.parameters()])
        weights = tuple([tuple(p.size()) for p in module.parameters()])

        tmpstr += '  (' + key + '): ' + modstr 
        if show_weights:
            tmpstr += ', weights={}'.format(weights)
        if show_parameters:
            tmpstr +=  ', parameters={}'.format(params)
        tmpstr += '\n'   

    tmpstr = tmpstr + ')'
    return tmpstr

# Test
import torchvision.models as models
model = models.alexnet()
print(torch_summarize(model))

# # Output
# AlexNet (
#   (features): Sequential (
#     (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)), weights=((64, 3, 11, 11), (64,)), parameters=23296
#     (1): ReLU (inplace), weights=(), parameters=0
#     (2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#     (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)), weights=((192, 64, 5, 5), (192,)), parameters=307392
#     (4): ReLU (inplace), weights=(), parameters=0
#     (5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#     (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((384, 192, 3, 3), (384,)), parameters=663936
#     (7): ReLU (inplace), weights=(), parameters=0
#     (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 384, 3, 3), (256,)), parameters=884992
#     (9): ReLU (inplace), weights=(), parameters=0
#     (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), weights=((256, 256, 3, 3), (256,)), parameters=590080
#     (11): ReLU (inplace), weights=(), parameters=0
#     (12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1)), weights=(), parameters=0
#   ), weights=((64, 3, 11, 11), (64,), (192, 64, 5, 5), (192,), (384, 192, 3, 3), (384,), (256, 384, 3, 3), (256,), (256, 256, 3, 3), (256,)), parameters=2469696
#   (classifier): Sequential (
#     (0): Dropout (p = 0.5), weights=(), parameters=0
#     (1): Linear (9216 -> 4096), weights=((4096, 9216), (4096,)), parameters=37752832
#     (2): ReLU (inplace), weights=(), parameters=0
#     (3): Dropout (p = 0.5), weights=(), parameters=0
#     (4): Linear (4096 -> 4096), weights=((4096, 4096), (4096,)), parameters=16781312
#     (5): ReLU (inplace), weights=(), parameters=0
#     (6): Linear (4096 -> 1000), weights=((1000, 4096), (1000,)), parameters=4097000
#   ), weights=((4096, 9216), (4096,), (4096, 4096), (4096,), (1000, 4096), (1000,)), parameters=58631144
# )

Edit: isaykatsman has a pytorch PR to add a model.summary() that is exactly like keras https://github.com/pytorch/pytorch/pull/3043/files


回答 4

最容易记住的(不像Keras那样漂亮):

print(model)

这也可以:

repr(model)

如果只需要参数数量:

sum([param.nelement() for param in model.parameters()])

来自:是否有与keras类似的pytorch函数与model.summary()?(论坛.PyTorch.org)

Simplest to remember (not as pretty as Keras):

print(model)

This also work:

repr(model)

If you just want the number of parameters:

sum([param.nelement() for param in model.parameters()])

From: Is there similar pytorch function as model.summary() as keras? (forum.PyTorch.org)


回答 5

您可以使用

from torchsummary import summary

您可以指定设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

您可以创建一个网络,如果您使用的是MNIST数据集,则以下命令将起作用并向您显示摘要

model = Network().to(device)
summary(model,(1,28,28))

You can use

from torchsummary import summary

You can specify device

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

You can create a Network, and if you are using MNIST datasets, then following commands will work and show you summary

model = Network().to(device)
summary(model,(1,28,28))

回答 6

AFAK没有pytorch中的等效model.summary()

同时,您可以引用szagoruyko的脚本,它提供了一个很好的可视化效果,如resnet18-example

干杯

AFAK there is no model.summary() like equivalent in pytorch

Meanwhile you can refer script by szagoruyko, which gives a nice visualizaton like in resnet18-example

Cheers


回答 7

在为模型类定义对象后,只需打印模型

class RNN(nn.Module):
    def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
        super().__init__()

        self.embedding = nn.Embedding(input_dim, embedding_dim)
        self.rnn = nn.RNN(embedding_dim, hidden_dim)
        self.fc = nn.Linear(hidden_dim, output_dim)
    def forward():
        ...

model = RNN(input_dim, embedding_dim, hidden_dim, output_dim)
print(model)

Simply print the model after defining an object for the model class

class RNN(nn.Module):
    def __init__(self, input_dim, embedding_dim, hidden_dim, output_dim):
        super().__init__()

        self.embedding = nn.Embedding(input_dim, embedding_dim)
        self.rnn = nn.RNN(embedding_dim, hidden_dim)
        self.fc = nn.Linear(hidden_dim, output_dim)
    def forward():
        ...

model = RNN(input_dim, embedding_dim, hidden_dim, output_dim)
print(model)

回答 8

您可以使用x.shape,以测量张量的x尺寸

You can just use x.shape, in order to measure tensor’s x dimensions


回答 9

为了可视化和总结PyTorch模型,也可以使用tensorboardX

For visualization and summary of PyTorch models, tensorboardX can also can be utilized.