假设有一个函数,这个函数需要接收4个参数,并返回这4个参数的和:

def sum_four(a, b, c, d):
    return a + b + c + d

如果需要固定最后前三个参数,仅改变最后一个参数的值,这时候可能需要这么调用:

>>> a, b, c = 1, 2, 3

>>> sum_four(a=a, b=b, c=c, d=1)
7

>>> sum_four(a=a, b=b, c=c, d=2)
8

>>> sum_four(a=a, b=b, c=c, d=3)
9

>>> sum_four(a=a, b=b, c=c, d=4)
10

这样写实在是太丑了,如果用 Map 函数,是否能简化代码?

答案是肯定的,但是Map函数只能接受单一元素,如果你强行使用的话,它会报这样的错:

>>> list(map(sum_four, [(1, 2, 3, 4)]))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: sum_four() missing 3 required positional arguments: 'b', 'c', and 'd'

怎么解决?

方案1: itertools.starmap

我们可以使用 itertools 的函数 starmap 替换Map.

它与Map不同,允许接受一个元组作为传入sum_four的参数。

>>> import itertools
>>> list(itertools.starmap(sum_four, [(1, 2, 3, 4)]))
[10]

非常棒,这样的话,上述问题就可以使用starmap函数解决:

>>> import itertools

>>> ds = [1, 2, 3, 4]

>>> items = ((a, b, c, d) for d in ds)

>>> list(items)
 [(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 2, 3, 4)]

>>> list(itertools.starmap(sum_four, items))
 [7, 8, 9, 10]

请注意 items 是一个生成器,这是为了避免 items 过大导致内存消耗量过大。平时开发的时候注意这些细节,能够使你和普通的开发者拉开差距。

方案2: functools.partial

第二种解决方案是使用 partial 函数固定前三个参数。

根据文档,partial 将“冻结”函数的参数的某些部分,从而生成简化版的函数。

因此上述问题的解决方案就是:

>>> import functools
>>> partial_sum_four = functools.partial(sum_four, a, b, c)
>>> partial_sum_four(3)
9
>>> # 这样就可以使用map函数了:
>>> list(map(partial_sum_four, ds))
[7, 8, 9, 10]

方案3: itertools.repeat()

事实上,Map 函数是允许传递可迭代参数的,但是有一个有趣的特点,他会用每个可迭代对象里的项作为传入函数的不同参数。这样说可能太过于抽象了,来看看实际的例子:

>>> list(map(sum_four, [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [1,2,3,4]))
 [7, 8, 9, 10]

明白了吧,每次都使用了不同数组中对应下标的项传入函数进行计算。

这样,我们可以使用这个特点进行优化。

itertools.repeat() 函数能够根据参数产生一个迭代器,该迭代器一次又一次返回对象。不指定times参数,它将无限期运行。

而 Map 函数会在最短的可迭代对象被迭代完后,就会自动停止运行。

结合这两个特点,上述问题的解决方案就出来了:

>>> import itertools
>>> list(map(sum_four, itertools.repeat(a), itertools.repeat(b), itertools.repeat(c), ds))
 [7, 8, 9, 10]

这招还是非常巧妙的。缺点是能读懂的人不多。不过没关系,计算机世界中某些东西知道就好,你并不一定需要去使用它。

比如本文中的这几种解决方案,日常生活工作中一般用不到,所以你不需要死记硬背,但你需要知道【有这样的问题】和【有这些解决方案】,万一遇到了相似的场景,你就可以回忆起这篇文章并快速找到解决的方法。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pandas 性能优化
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。