标签归档:correlation

使用.corr获取两列之间的相关性

问题:使用.corr获取两列之间的相关性

我有以下熊猫数据框Top15

我创建了一个估计每人可引用文件数量的列:

Top15['PopEst'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
Top15['Citable docs per Capita'] = Top15['Citable documents'] / Top15['PopEst']

我想知道人均引用文件数量与人均能源供应之间的相关性。因此,我使用了.corr()方法(皮尔逊相关性):

data = Top15[['Citable docs per Capita','Energy Supply per Capita']]
correlation = data.corr(method='pearson')

我想返回一个数字,但是结果是:

I have the following pandas dataframe Top15:

I create a column that estimates the number of citable documents per person:

Top15['PopEst'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
Top15['Citable docs per Capita'] = Top15['Citable documents'] / Top15['PopEst']

I want to know the correlation between the number of citable documents per capita and the energy supply per capita. So I use the .corr() method (Pearson’s correlation):

data = Top15[['Citable docs per Capita','Energy Supply per Capita']]
correlation = data.corr(method='pearson')

I want to return a single number, but the result is:


回答 0

没有实际数据,很难回答这个问题,但是我想您正在寻找这样的东西:

Top15['Citable docs per Capita'].corr(Top15['Energy Supply per Capita'])

这样就可以计算出两列 'Citable docs per Capita'之间的相关性'Energy Supply per Capita'

举个例子:

import pandas as pd

df = pd.DataFrame({'A': range(4), 'B': [2*i for i in range(4)]})

   A  B
0  0  0
1  1  2
2  2  4
3  3  6

然后

df['A'].corr(df['B'])

给出1预期。

现在,如果您更改一个值,例如

df.loc[2, 'B'] = 4.5

   A    B
0  0  0.0
1  1  2.0
2  2  4.5
3  3  6.0

命令

df['A'].corr(df['B'])

退货

0.99586

仍接近预期的1。

如果.corr直接应用于数据框,它将返回列之间的所有成对关联;这就是为什么您然后1s在矩阵的对角线处进行观察的原因(每列与自身完全相关)。

df.corr()

因此将返回

          A         B
A  1.000000  0.995862
B  0.995862  1.000000

在您显示的图形中,仅表示相关矩阵的左上角(我假设)。

在某些情况下,您可以NaN在解决方案中找到s-请查看示例。

如果要过滤高于或低于特定阈值的条目,可以检查此问题。如果要绘制相关系数的热图,可以检查该答案,如果然后遇到轴标签重叠的问题,请检查以下文章

Without actual data it is hard to answer the question but I guess you are looking for something like this:

Top15['Citable docs per Capita'].corr(Top15['Energy Supply per Capita'])

That calculates the correlation between your two columns 'Citable docs per Capita' and 'Energy Supply per Capita'.

To give an example:

import pandas as pd

df = pd.DataFrame({'A': range(4), 'B': [2*i for i in range(4)]})

   A  B
0  0  0
1  1  2
2  2  4
3  3  6

Then

df['A'].corr(df['B'])

gives 1 as expected.

Now, if you change a value, e.g.

df.loc[2, 'B'] = 4.5

   A    B
0  0  0.0
1  1  2.0
2  2  4.5
3  3  6.0

the command

df['A'].corr(df['B'])

returns

0.99586

which is still close to 1, as expected.

If you apply .corr directly to your dataframe, it will return all pairwise correlations between your columns; that’s why you then observe 1s at the diagonal of your matrix (each column is perfectly correlated with itself).

df.corr()

will therefore return

          A         B
A  1.000000  0.995862
B  0.995862  1.000000

In the graphic you show, only the upper left corner of the correlation matrix is represented (I assume).

There can be cases, where you get NaNs in your solution – check this post for an example.

If you want to filter entries above/below a certain threshold, you can check this question. If you want to plot a heatmap of the correlation coefficients, you can check this answer and if you then run into the issue with overlapping axis-labels check the following post.


回答 1

我遇到了同样的问题。它似乎Citable Documents per Person是一个浮点数,Python默认以某种方式跳过它。我数据框的所有其他列均为numpy格式,因此我通过将columnt转换为np.float64

Top15['Citable Documents per Person']=np.float64(Top15['Citable Documents per Person'])

请记住,这正是您自己计算的列

I ran into the same issue. It appeared Citable Documents per Person was a float, and python skips it somehow by default. All the other columns of my dataframe were in numpy-formats, so I solved it by converting the columnt to np.float64

Top15['Citable Documents per Person']=np.float64(Top15['Citable Documents per Person'])

Remember it’s exactly the column you calculated yourself


回答 2

我的解决方案是将数据转换为数值类型后:

Top15[['Citable docs per Capita','Energy Supply per Capita']].corr()

My solution would be after converting data to numerical type:

Top15[['Citable docs per Capita','Energy Supply per Capita']].corr()

回答 3

如果要在所有成对的列之间建立关联,可以执行以下操作:

import pandas as pd
import numpy as np

def get_corrs(df):
    col_correlations = df.corr()
    col_correlations.loc[:, :] = np.tril(col_correlations, k=-1)
    cor_pairs = col_correlations.stack()
    return cor_pairs.to_dict()

my_corrs = get_corrs(df)
# and the following line to retrieve the single correlation
print(my_corrs[('Citable docs per Capita','Energy Supply per Capita')])

If you want the correlations between all pairs of columns, you could do something like this:

import pandas as pd
import numpy as np

def get_corrs(df):
    col_correlations = df.corr()
    col_correlations.loc[:, :] = np.tril(col_correlations, k=-1)
    cor_pairs = col_correlations.stack()
    return cor_pairs.to_dict()

my_corrs = get_corrs(df)
# and the following line to retrieve the single correlation
print(my_corrs[('Citable docs per Capita','Energy Supply per Capita')])

回答 4

当您调用:

data = Top15[['Citable docs per Capita','Energy Supply per Capita']]
correlation = data.corr(method='pearson')

由于DataFrame.corr()函数执行成对关联,因此您需要从两个变量中获得四对。因此,基本上,您会得到对角线值作为自动相关性(与自身相关,两个值,因为您有两个变量),而其他两个值作为一个对另一个的互相关,反之亦然。

在两个序列之间执行相关以获得单个值:

from scipy.stats.stats import pearsonr
docs_col = Top15['Citable docs per Capita'].values
energy_col = Top15['Energy Supply per Capita'].values
corr , _ = pearsonr(docs_col, energy_col)

或者,如果您想从同一函数(DataFrame的corr)中获得一个值:

single_value = correlation[0][1] 

希望这可以帮助。

When you call this:

data = Top15[['Citable docs per Capita','Energy Supply per Capita']]
correlation = data.corr(method='pearson')

Since, DataFrame.corr() function performs pair-wise correlations, you have four pair from two variables. So, basically you are getting diagonal values as auto correlation (correlation with itself, two values since you have two variables), and other two values as cross correlations of one vs another and vice versa.

Either perform correlation between two series to get a single value:

from scipy.stats.stats import pearsonr
docs_col = Top15['Citable docs per Capita'].values
energy_col = Top15['Energy Supply per Capita'].values
corr , _ = pearsonr(docs_col, energy_col)

or, if you want a single value from the same function (DataFrame’s corr):

single_value = correlation[0][1] 

Hope this helps.


回答 5

它是这样的:

Top15['Citable docs per Capita']=np.float64(Top15['Citable docs per Capita'])

Top15['Energy Supply per Capita']=np.float64(Top15['Energy Supply per Capita'])

Top15['Energy Supply per Capita'].corr(Top15['Citable docs per Capita'])

It works like this:

Top15['Citable docs per Capita']=np.float64(Top15['Citable docs per Capita'])

Top15['Energy Supply per Capita']=np.float64(Top15['Energy Supply per Capita'])

Top15['Energy Supply per Capita'].corr(Top15['Citable docs per Capita'])

回答 6

我通过更改数据类型解决了这个问题。如果您看到“人均能源供应”是数字类型,而“人均城市文档”则是对象类型。我使用astype将列转换为float。我曾与一些NP功能相同的问题:count_nonzerosum合作,同时meanstd没有。

I solved this problem by changing the data type. If you see the ‘Energy Supply per Capita’ is a numerical type while the ‘Citable docs per Capita’ is an object type. I converted the column to float using astype. I had the same problem with some np functions: count_nonzero and sum worked while mean and std didn’t.


回答 7

在关联之前将“人均Citable docs”更改为数字可以解决该问题。

    Top15['Citable docs per Capita'] = pd.to_numeric(Top15['Citable docs per Capita'])
    data = Top15[['Citable docs per Capita','Energy Supply per Capita']]
    correlation = data.corr(method='pearson')

changing ‘Citable docs per Capita’ to numeric before correlation will solve the problem.

    Top15['Citable docs per Capita'] = pd.to_numeric(Top15['Citable docs per Capita'])
    data = Top15[['Citable docs per Capita','Energy Supply per Capita']]
    correlation = data.corr(method='pearson')

列出大关联矩阵中的最高关联对?

问题:列出大关联矩阵中的最高关联对?

您如何在与熊猫相关的矩阵中找到最相关的?关于如何使用R进行操作有很多答案(将相关性显示为有序列表,而不是大型矩阵从Python或R中从大型数据集中获取高度相关对的有效方法),但我想知道如何做到这一点大熊猫?在我的情况下,矩阵为4460×4460,因此无法从视觉上做到。

How do you find the top correlations in a correlation matrix with Pandas? There are many answers on how to do this with R (Show correlations as an ordered list, not as a large matrix or Efficient way to get highly correlated pairs from large data set in Python or R), but I am wondering how to do it with pandas? In my case the matrix is 4460×4460, so can’t do it visually.


回答 0

您可以DataFrame.values用来获取数据的numpy数组,然后使用NumPy函数argsort()来获取最相关的对。

但是,如果要在熊猫中执行此操作,则可以unstack对DataFrame进行排序:

import pandas as pd
import numpy as np

shape = (50, 4460)

data = np.random.normal(size=shape)

data[:, 1000] += data[:, 2000]

df = pd.DataFrame(data)

c = df.corr().abs()

s = c.unstack()
so = s.sort_values(kind="quicksort")

print so[-4470:-4460]

这是输出:

2192  1522    0.636198
1522  2192    0.636198
3677  2027    0.641817
2027  3677    0.641817
242   130     0.646760
130   242     0.646760
1171  2733    0.670048
2733  1171    0.670048
1000  2000    0.742340
2000  1000    0.742340
dtype: float64

You can use DataFrame.values to get an numpy array of the data and then use NumPy functions such as argsort() to get the most correlated pairs.

But if you want to do this in pandas, you can unstack and sort the DataFrame:

import pandas as pd
import numpy as np

shape = (50, 4460)

data = np.random.normal(size=shape)

data[:, 1000] += data[:, 2000]

df = pd.DataFrame(data)

c = df.corr().abs()

s = c.unstack()
so = s.sort_values(kind="quicksort")

print so[-4470:-4460]

Here is the output:

2192  1522    0.636198
1522  2192    0.636198
3677  2027    0.641817
2027  3677    0.641817
242   130     0.646760
130   242     0.646760
1171  2733    0.670048
2733  1171    0.670048
1000  2000    0.742340
2000  1000    0.742340
dtype: float64

回答 1

@HYRY的答案是完美的。只是通过添加更多逻辑来避免重复和自相关以及正确的排序来构建该答案:

import pandas as pd
d = {'x1': [1, 4, 4, 5, 6], 
     'x2': [0, 0, 8, 2, 4], 
     'x3': [2, 8, 8, 10, 12], 
     'x4': [-1, -4, -4, -4, -5]}
df = pd.DataFrame(data = d)
print("Data Frame")
print(df)
print()

print("Correlation Matrix")
print(df.corr())
print()

def get_redundant_pairs(df):
    '''Get diagonal and lower triangular pairs of correlation matrix'''
    pairs_to_drop = set()
    cols = df.columns
    for i in range(0, df.shape[1]):
        for j in range(0, i+1):
            pairs_to_drop.add((cols[i], cols[j]))
    return pairs_to_drop

def get_top_abs_correlations(df, n=5):
    au_corr = df.corr().abs().unstack()
    labels_to_drop = get_redundant_pairs(df)
    au_corr = au_corr.drop(labels=labels_to_drop).sort_values(ascending=False)
    return au_corr[0:n]

print("Top Absolute Correlations")
print(get_top_abs_correlations(df, 3))

给出以下输出:

Data Frame
   x1  x2  x3  x4
0   1   0   2  -1
1   4   0   8  -4
2   4   8   8  -4
3   5   2  10  -4
4   6   4  12  -5

Correlation Matrix
          x1        x2        x3        x4
x1  1.000000  0.399298  1.000000 -0.969248
x2  0.399298  1.000000  0.399298 -0.472866
x3  1.000000  0.399298  1.000000 -0.969248
x4 -0.969248 -0.472866 -0.969248  1.000000

Top Absolute Correlations
x1  x3    1.000000
x3  x4    0.969248
x1  x4    0.969248
dtype: float64

@HYRY’s answer is perfect. Just building on that answer by adding a bit more logic to avoid duplicate and self correlations and proper sorting:

import pandas as pd
d = {'x1': [1, 4, 4, 5, 6], 
     'x2': [0, 0, 8, 2, 4], 
     'x3': [2, 8, 8, 10, 12], 
     'x4': [-1, -4, -4, -4, -5]}
df = pd.DataFrame(data = d)
print("Data Frame")
print(df)
print()

print("Correlation Matrix")
print(df.corr())
print()

def get_redundant_pairs(df):
    '''Get diagonal and lower triangular pairs of correlation matrix'''
    pairs_to_drop = set()
    cols = df.columns
    for i in range(0, df.shape[1]):
        for j in range(0, i+1):
            pairs_to_drop.add((cols[i], cols[j]))
    return pairs_to_drop

def get_top_abs_correlations(df, n=5):
    au_corr = df.corr().abs().unstack()
    labels_to_drop = get_redundant_pairs(df)
    au_corr = au_corr.drop(labels=labels_to_drop).sort_values(ascending=False)
    return au_corr[0:n]

print("Top Absolute Correlations")
print(get_top_abs_correlations(df, 3))

That gives the following output:

Data Frame
   x1  x2  x3  x4
0   1   0   2  -1
1   4   0   8  -4
2   4   8   8  -4
3   5   2  10  -4
4   6   4  12  -5

Correlation Matrix
          x1        x2        x3        x4
x1  1.000000  0.399298  1.000000 -0.969248
x2  0.399298  1.000000  0.399298 -0.472866
x3  1.000000  0.399298  1.000000 -0.969248
x4 -0.969248 -0.472866 -0.969248  1.000000

Top Absolute Correlations
x1  x3    1.000000
x3  x4    0.969248
x1  x4    0.969248
dtype: float64

回答 2

很少有没有冗余变量对的行解决方案:

corr_matrix = df.corr().abs()

#the matrix is symmetric so we need to extract upper triangle matrix without diagonal (k = 1)

sol = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
                  .stack()
                  .sort_values(ascending=False))

#first element of sol series is the pair with the biggest correlation

然后,您可以遍历变量对的名称(pandas.Series多索引)及其值,如下所示:

for index, value in sol.items():
  # do some staff

Few lines solution without redundant pairs of variables:

corr_matrix = df.corr().abs()

#the matrix is symmetric so we need to extract upper triangle matrix without diagonal (k = 1)

sol = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
                  .stack()
                  .sort_values(ascending=False))

#first element of sol series is the pair with the biggest correlation

Then you can iterate through names of variables pairs (which are pandas.Series multi-indexes) and theirs values like this:

for index, value in sol.items():
  # do some staff

回答 3

结合@HYRY和@arun的某些功能,可以df使用以下命令在一行中打印数据帧的最高相关性:

df.corr().unstack().sort_values().drop_duplicates()

注意:一个缺点是,如果您具有1.0的相关性,该相关性本身并不是一个变量,则drop_duplicates()添加会删除它们

Combining some features of @HYRY and @arun’s answers, you can print the top correlations for dataframe df in a single line using:

df.corr().unstack().sort_values().drop_duplicates()

Note: the one downside is if you have 1.0 correlations that are not one variable to itself, the drop_duplicates() addition would remove them


回答 4

使用下面的代码按降序查看相关性。

# See the correlations in descending order

corr = df.corr() # df is the pandas dataframe
c1 = corr.abs().unstack()
c1.sort_values(ascending = False)

Use the code below to view the correlations in the descending order.

# See the correlations in descending order

corr = df.corr() # df is the pandas dataframe
c1 = corr.abs().unstack()
c1.sort_values(ascending = False)

回答 5

您可以通过替换数据来根据此简单代码以图形方式进行操作。

corr = df.corr()

kot = corr[corr>=.9]
plt.figure(figsize=(12,8))
sns.heatmap(kot, cmap="Greens")

You can do graphically according to this simple code by substituting your data.

corr = df.corr()

kot = corr[corr>=.9]
plt.figure(figsize=(12,8))
sns.heatmap(kot, cmap="Greens")


回答 6

这里有很多好的答案。我找到的最简单的方法是上述一些答案的组合。

corr = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
corr = corr.unstack().transpose()\
    .sort_values(by='column', ascending=False)\
    .dropna()

Lot’s of good answers here. The easiest way I found was a combination of some of the answers above.

corr = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
corr = corr.unstack().transpose()\
    .sort_values(by='column', ascending=False)\
    .dropna()

回答 7

用于itertools.combinations从熊猫自己的相关矩阵中获取所有唯一的相关性.corr(),生成列表列表并将其反馈回DataFrame中,以便使用“ .sort_values”。设置ascending = True为在顶部显示最低的相关性

corrank使用DataFrame作为参数,因为它需要.corr()

  def corrank(X: pandas.DataFrame):
        import itertools
        df = pd.DataFrame([[(i,j),X.corr().loc[i,j]] for i,j in list(itertools.combinations(X.corr(), 2))],columns=['pairs','corr'])    
        print(df.sort_values(by='corr',ascending=False))

  corrank(X) # prints a descending list of correlation pair (Max on top)

Use itertools.combinations to get all unique correlations from pandas own correlation matrix .corr(), generate list of lists and feed it back into a DataFrame in order to use ‘.sort_values’. Set ascending = True to display lowest correlations on top

corrank takes a DataFrame as argument because it requires .corr().

  def corrank(X: pandas.DataFrame):
        import itertools
        df = pd.DataFrame([[(i,j),X.corr().loc[i,j]] for i,j in list(itertools.combinations(X.corr(), 2))],columns=['pairs','corr'])    
        print(df.sort_values(by='corr',ascending=False))

  corrank(X) # prints a descending list of correlation pair (Max on top)

回答 8

我不想让unstack这个问题复杂化,因为我只是想在功能选择阶段删除一些高度相关的功能。

因此,我得到了以下简化的解决方案:

# map features to their absolute correlation values
corr = features.corr().abs()

# set equality (self correlation) as zero
corr[corr == 1] = 0

# of each feature, find the max correlation
# and sort the resulting array in ascending order
corr_cols = corr.max().sort_values(ascending=False)

# display the highly correlated features
display(corr_cols[corr_cols > 0.8])

在这种情况下,如果要删除相关特征,则可以映射过滤后的corr_cols数组并删除奇数索引(或偶数索引)的特征。

I didn’t want to unstack or over-complicate this issue, since I just wanted to drop some highly correlated features as part of a feature selection phase.

So I ended up with the following simplified solution:

# map features to their absolute correlation values
corr = features.corr().abs()

# set equality (self correlation) as zero
corr[corr == 1] = 0

# of each feature, find the max correlation
# and sort the resulting array in ascending order
corr_cols = corr.max().sort_values(ascending=False)

# display the highly correlated features
display(corr_cols[corr_cols > 0.8])

In this case, if you want to drop correlated features, you may map through the filtered corr_cols array and remove the odd-indexed (or even-indexed) ones.


回答 9

我在这里尝试一些解决方案,但后来我想出了自己的解决方案。我希望这可能对下一个有用,所以我在这里分享:

def sort_correlation_matrix(correlation_matrix):
    cor = correlation_matrix.abs()
    top_col = cor[cor.columns[0]][1:]
    top_col = top_col.sort_values(ascending=False)
    ordered_columns = [cor.columns[0]] + top_col.index.tolist()
    return correlation_matrix[ordered_columns].reindex(ordered_columns)

I was trying some of the solutions here but then I actually came up with my own one. I hope this might be useful for the next one so I share it here:

def sort_correlation_matrix(correlation_matrix):
    cor = correlation_matrix.abs()
    top_col = cor[cor.columns[0]][1:]
    top_col = top_col.sort_values(ascending=False)
    ordered_columns = [cor.columns[0]] + top_col.index.tolist()
    return correlation_matrix[ordered_columns].reindex(ordered_columns)

回答 10

这是@MiFi的改进代码。该顺序为绝对值,但不排除负值。

   def top_correlation (df,n):
    corr_matrix = df.corr()
    correlation = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
                 .stack()
                 .sort_values(ascending=False))
    correlation = pd.DataFrame(correlation).reset_index()
    correlation.columns=["Variable_1","Variable_2","Correlacion"]
    correlation = correlation.reindex(correlation.Correlacion.abs().sort_values(ascending=False).index).reset_index().drop(["index"],axis=1)
    return correlation.head(n)

top_correlation(ANYDATA,10)

This is a improve code from @MiFi. This one order in abs but not excluding the negative values.

   def top_correlation (df,n):
    corr_matrix = df.corr()
    correlation = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
                 .stack()
                 .sort_values(ascending=False))
    correlation = pd.DataFrame(correlation).reset_index()
    correlation.columns=["Variable_1","Variable_2","Correlacion"]
    correlation = correlation.reindex(correlation.Correlacion.abs().sort_values(ascending=False).index).reset_index().drop(["index"],axis=1)
    return correlation.head(n)

top_correlation(ANYDATA,10)

回答 11

以下功能可以解决问题。这个实现

  • 删除自相关
  • 删除重复项
  • 可以选择前N个最相关的功能

并且它也是可配置的,因此您既可以保留自相关,也可以保留重复。您还可以根据需要报告尽可能多的功能对。


def get_feature_correlation(df, top_n=None, corr_method='spearman',
                            remove_duplicates=True, remove_self_correlations=True):
    """
    Compute the feature correlation and sort feature pairs based on their correlation

    :param df: The dataframe with the predictor variables
    :type df: pandas.core.frame.DataFrame
    :param top_n: Top N feature pairs to be reported (if None, all of the pairs will be returned)
    :param corr_method: Correlation compuation method
    :type corr_method: str
    :param remove_duplicates: Indicates whether duplicate features must be removed
    :type remove_duplicates: bool
    :param remove_self_correlations: Indicates whether self correlations will be removed
    :type remove_self_correlations: bool

    :return: pandas.core.frame.DataFrame
    """
    corr_matrix_abs = df.corr(method=corr_method).abs()
    corr_matrix_abs_us = corr_matrix_abs.unstack()
    sorted_correlated_features = corr_matrix_abs_us \
        .sort_values(kind="quicksort", ascending=False) \
        .reset_index()

    # Remove comparisons of the same feature
    if remove_self_correlations:
        sorted_correlated_features = sorted_correlated_features[
            (sorted_correlated_features.level_0 != sorted_correlated_features.level_1)
        ]

    # Remove duplicates
    if remove_duplicates:
        sorted_correlated_features = sorted_correlated_features.iloc[:-2:2]

    # Create meaningful names for the columns
    sorted_correlated_features.columns = ['Feature 1', 'Feature 2', 'Correlation (abs)']

    if top_n:
        return sorted_correlated_features[:top_n]

    return sorted_correlated_features

The following function should do the trick. This implementation

  • Removes self correlations
  • Removes duplicates
  • Enables the selection of top N highest correlated features

and it is also configurable so that you can keep both the self correlations as well as the duplicates. You can also to report as many feature pairs as you wish.


def get_feature_correlation(df, top_n=None, corr_method='spearman',
                            remove_duplicates=True, remove_self_correlations=True):
    """
    Compute the feature correlation and sort feature pairs based on their correlation

    :param df: The dataframe with the predictor variables
    :type df: pandas.core.frame.DataFrame
    :param top_n: Top N feature pairs to be reported (if None, all of the pairs will be returned)
    :param corr_method: Correlation compuation method
    :type corr_method: str
    :param remove_duplicates: Indicates whether duplicate features must be removed
    :type remove_duplicates: bool
    :param remove_self_correlations: Indicates whether self correlations will be removed
    :type remove_self_correlations: bool

    :return: pandas.core.frame.DataFrame
    """
    corr_matrix_abs = df.corr(method=corr_method).abs()
    corr_matrix_abs_us = corr_matrix_abs.unstack()
    sorted_correlated_features = corr_matrix_abs_us \
        .sort_values(kind="quicksort", ascending=False) \
        .reset_index()

    # Remove comparisons of the same feature
    if remove_self_correlations:
        sorted_correlated_features = sorted_correlated_features[
            (sorted_correlated_features.level_0 != sorted_correlated_features.level_1)
        ]

    # Remove duplicates
    if remove_duplicates:
        sorted_correlated_features = sorted_correlated_features.iloc[:-2:2]

    # Create meaningful names for the columns
    sorted_correlated_features.columns = ['Feature 1', 'Feature 2', 'Correlation (abs)']

    if top_n:
        return sorted_correlated_features[:top_n]

    return sorted_correlated_features


回答 12

我最喜欢Addison Klinke的帖子,因为它是最简单的,但它最喜欢使用Wojciech Moszczyzysk的建议进行过滤和制图,但是扩展了该过滤器以避免绝对值,因此给定一个大的相关矩阵,对其进行过滤,制图然后对其进行展平:

创建,过滤和绘制图表

dfCorr = df.corr()
filteredDf = dfCorr[((dfCorr >= .5) | (dfCorr <= -.5)) & (dfCorr !=1.000)]
plt.figure(figsize=(30,10))
sn.heatmap(filteredDf, annot=True, cmap="Reds")
plt.show()

功能

最后,我创建了一个小函数来创建相关矩阵,对其进行过滤,然后对其进行展平。作为一个想法,它可以很容易地扩展,例如不对称的上下限等。

def corrFilter(x: pd.DataFrame, bound: float):
    xCorr = x.corr()
    xFiltered = xCorr[((xCorr >= bound) | (xCorr <= -bound)) & (xCorr !=1.000)]
    xFlattened = xFiltered.unstack().sort_values().drop_duplicates()
    return xFlattened

corrFilter(df, .7)

I liked Addison Klinke’s post the most, as being the simplest, but used Wojciech Moszczyńsk’s suggestion for filtering and charting, but extended the filter to avoid absolute values, so given a large correlation matrix, filter it, chart it, and then flatten it:

Created, Filtered and Charted

dfCorr = df.corr()
filteredDf = dfCorr[((dfCorr >= .5) | (dfCorr <= -.5)) & (dfCorr !=1.000)]
plt.figure(figsize=(30,10))
sn.heatmap(filteredDf, annot=True, cmap="Reds")
plt.show()

Function

In the end, I created a small function to create the correlation matrix, filter it, and then flatten it. As an idea, it could easily be extended, e.g., asymmetric upper and lower bounds, etc.

def corrFilter(x: pd.DataFrame, bound: float):
    xCorr = x.corr()
    xFiltered = xCorr[((xCorr >= bound) | (xCorr <= -bound)) & (xCorr !=1.000)]
    xFlattened = xFiltered.unstack().sort_values().drop_duplicates()
    return xFlattened

corrFilter(df, .7)