@book{howard2020deep,
title={Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD},
author={Howard, J. and Gugger, S.},
isbn={9781492045526},
url={https://books.google.no/books?id=xd6LxgEACAAJ},
year={2020},
publisher={O'Reilly Media, Incorporated}
}
PaddlePaddle在超大规模深度神经网络训练方面取得突破性进展。它推出了世界上第一个大规模开源培训平台,支持使用分布在数百个节点上的数据源进行具有1000亿个功能和数万亿参数的深度网络的培训。PaddlePaddle克服了超大规模深度学习模型在线深度学习的挑战,进一步实现了超过1万亿参数的模型实时更新Click here to learn more
fromrayimporttunedefobjective(step, alpha, beta):
return (0.1+alpha*step/100)**(-1) +beta*0.1deftraining_function(config):
# Hyperparametersalpha, beta=config["alpha"], config["beta"]
forstepinrange(10):
# Iterative training function - can be any arbitrary training procedure.intermediate_score=objective(step, alpha, beta)
# Feed the score back back to Tune.tune.report(mean_loss=intermediate_score)
analysis=tune.run(
training_function,
config={
"alpha": tune.grid_search([0.001, 0.01, 0.1]),
"beta": tune.choice([1, 2, 3])
})
print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
# Get a dataframe for analyzing trial results.df=analysis.results_df
您可以在不安装的情况下使用Fastai,方法是使用Google Colab事实上,本文档的每一页还可以作为交互式笔记本使用-单击任何页面顶部的“Open in CoLab”将其打开(请确保将Colab运行时更改为“GPU”以使其快速运行!)请参阅上的fast.ai文档Using Colab了解更多信息