标签归档:machine-learning-algorithms

Machine-learning-course-使用Python语言的💬机器学习课程:

Introduction

本项目的目的是提供一门使用Python进行机器学习的全面而又简单的课程

Motivation

Machine Learning,作为一种工具Artificial Intelligence,是采用最广泛的科学领域之一。已经发表了大量关于机器学习的文献。本项目的目的是提供以下最重要的方面Machine Learning通过介绍一系列简单而全面的教程,您可以使用Python在这个项目中,我们使用了许多不同的众所周知的机器学习框架来构建我们的教程,例如Scikit-learn在本项目中,您将了解到:

  • 机器学习的定义是什么?
  • 它是什么时候开始的,趋势是什么?
  • 什么是机器学习类别和子类别?
  • 最常用的机器学习算法是什么?如何实现它们?

Machine Learning

标题 文档
机器学习导论 Overview

Machine Learning Basics

标题 代码 文档
线性回归 Python Tutorial
适配过高/适配不足 Python Tutorial
正则化 Python Tutorial
交叉验证 Python Tutorial

Supervised learning

标题 代码 文档
决策树 Python Tutorial
K-近邻 Python Tutorial
朴素贝叶斯 Python Tutorial
Logistic回归 Python Tutorial
支持向量机 Python Tutorial

Unsupervised learning

标题 代码 文档
群集 Python Tutorial
主成分分析 Python Tutorial

Deep Learning

标题 代码 文档
神经网络概述 Python Tutorial
卷积神经网络 Python Tutorial
自动编码器 Python Tutorial
递归神经网络 Python IPython

Pull Request Process

请考虑以下标准,以便更好地帮助我们:

  1. 拉取请求主要预期为链接建议
  2. 请确保您建议的资源没有过时或损坏
  3. 在执行构建和创建拉入请求时,请确保在图层结束之前移除所有安装或构建依赖项
  4. 添加带有接口更改详细信息的注释,包括新的环境变量、暴露的端口、有用的文件位置和容器参数
  5. 一旦您获得至少一个其他开发人员的签字,您就可以合并拉取请求,或者如果您没有权限这样做,如果您相信所有检查都已通过,您可以请求所有者为您合并该请求

Final Note

我们期待着您的善意反馈。请帮助我们改进这个开源项目,让我们的工作做得更好。对于捐款,请创建拉取请求,我们会立即进行调查。再次感谢您的反馈和支持

Developers

创建者:机器学习思维模式[BlogGitHubTwitter]

主管:Amirsina Torfi[GitHubPersonal WebsiteLinkedin]

开发商:Brendan Sherman*,James E Hopkins*[Linkedin],扎克·史密斯[Linkedin]

注意事项:本项目已被开发为顶峰项目,由[CS 4624 Multimedia/ Hypertext course at Virginia Tech],并由[Machine Learning Mindset]

*:平均分担

Citation

如果您觉得本课程有用,请考虑引用如下内容:

@software{amirsina_torfi_2019_3585763,
  author       = {Amirsina Torfi and
                  Brendan Sherman and
                  Jay Hopkins and
                  Eric Wynn and
                  hokie45 and
                  Frederik De Bleser and
                  李明岳 and
                  Samuel Husso and
                  Alain},
  title        = {{machinelearningmindset/machine-learning-course:
                   Machine Learning with Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {1.0},
  doi          = {10.5281/zenodo.3585763},
  url          = {https://doi.org/10.5281/zenodo.3585763}
}

Homemade-machine-learning 流行机器学习算法示例,并解释了交互式🤖演示和数学

有监督的学习

在有监督的学习中,我们有一组训练数据作为输入,有一组标签或每个训练集的“正确答案”作为输出。然后,我们正在训练我们的模型(机器学习算法参数),以正确地将输入映射到输出(以进行正确的预测)。最终目的是找到能够成功继续正确运行的模型参数输入→输出映射(预测),即使对于新的输入示例也是如此

回归

在回归问题中,我们做实值预测。基本上,我们尝试沿着训练示例绘制一条直线/平面/n维平面

使用示例:股价预测、销售分析、任意数字依赖等

🤖线性回归

分类

在分类问题中,我们按一定的特征划分输入样本

使用示例:垃圾邮件过滤器、语言检测、查找相似文档、手写字母识别等

🤖Logistic回归

无监督学习

无监督学习是机器学习的一个分支,它从没有标记、分类或分类的测试数据中学习。无监督学习不是响应反馈,而是识别数据中的共性,并根据每个新数据中是否存在这些共性来做出反应

群集

在聚类问题中,我们根据未知特征对训练样本进行拆分。算法本身决定使用什么特征进行分割

使用示例:市场细分、社交网络分析、组织计算集群、天文数据分析、图像压缩等

🤖K-均值算法

异常检测

异常检测(也称为离群值检测)是通过与大多数数据显著不同来识别引起怀疑的稀有项目、事件或观测

使用示例:入侵检测、欺诈检测、系统健康监控、从数据集中删除异常数据等

🤖基于高斯分布的异常检测

神经网络(NN)

神经网络本身不是一种算法,而是许多不同的机器学习算法协同工作并处理复杂数据输入的框架

使用示例:作为替身所有其他算法的总称,图像识别、语音识别、图像处理(应用特定风格)、语言翻译等

🤖多层感知器(MLP)

机器学习地图

以下机器学习主题地图的来源是this wonderful blog post

必备条件

安装Python

确保你有Python installed在您的机器上

您可能想要使用venv创建虚拟环境的标准Python库,pip以及从本地项目目录安装和提供的所有从属软件包,以避免扰乱系统范围的软件包及其版本

安装依赖项

通过运行以下命令安装项目所需的所有依赖项:

pip install -r requirements.txt

在当地发射木星

项目中的所有演示都可以直接在您的浏览器中运行,而无需在本地安装Jupyter。但如果你想发射Jupyter Notebook在本地,您可以通过从项目的根文件夹运行以下命令来完成此操作:

jupyter notebook

在此之后,Jupyter笔记本将可以通过以下方式访问http://localhost:8888

远程发射木星

每个算法部分都包含指向以下内容的演示链接Jupyter NBViewer这是Jupyter笔记本的快速在线预览器,您可以在浏览器中直接看到演示代码、图表和数据,而无需在本地安装任何东西。如果你想的话变化代码和实验使用演示笔记本时,您需要在中启动笔记本Binder您只需单击“在活页夹上执行”NBViewer右上角的链接

数据集

可在以下位置找到用于Jupyter笔记本演示的数据集列表data folder

支持该项目

您可以通过以下方式支持此项目❤️️GitHub或❤️️Patreon

100-Days-Of-ML-Code-100天的ML编码

ML-100天代码

100天机器学习 Siraj Raval

获取数据集: here

数据预处理|第1天

从以下位置签出代码: here

简单线性回归|第2天

从以下位置签出代码here

多元线性回归|第3天

从以下位置签出代码here

Logistic回归|第4天

Logistic回归|第5天

今天进入#100DaysOfMLCode,我更深入地研究了Logistic回归到底是什么,以及它背后涉及的数学知识是什么。学习了成本函数的计算方法,以及如何将梯度下降算法应用于成本函数,使预测误差最小化
由于时间不多,我现在会隔天贴一张信息图。此外,如果有人想要帮助我编写代码文档,并且已经在该领域有一些经验,并且知道GitHub的Markdown,请在LinkedIn上与我联系:)

实施Logistic回归|第6天

查看代码here

K个最近的邻居|第7天

Logistic回归背后的数学|第8天

#100DaysOfMLCode为了阐明我对逻辑回归的见解我在互联网上搜索了一些资源或文章,我偶然看到了这篇文章(https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc)Saishruthi Swminathan著

对Logistic回归进行了详细的描述。一定要检查一下

支持向量机|第9天

对支持向量机是什么以及如何使用它来解决分类问题有了一个直观的了解

支持向量机和KNN|第10天

了解有关支持向量机的工作原理和实现K-NN算法的详细信息

K-NN实施|第11天

实现了K-NN分类算法。#100DaysOfMLCode支持向量机信息图已完成一半。明天会更新的

支持向量机|第12天

朴素贝叶斯分类器|第13天

今天继续讨论#100DaysOfMLCode,我介绍了朴素贝叶斯分类器。我还使用SCISKIT-LEARN在python中实现了支持向量机。将很快更新代码

支持向量机实施|第14天

今天我在线性相关的数据上实现了支持向量机。二手Scikit学习图书馆。在Scikit-Learning中,我们使用SVC分类器来完成这项任务。将在下一次实现中使用内核技巧。检查代码here

朴素贝叶斯分类器和黑盒机器学习|第15天

学习了不同类型的朴素贝叶斯分类器。也是通过以下方式开始讲课的Bloomberg播放列表中的第一个是黑盒机器学习。对预测函数、特征提取、学习算法、性能评估、交叉验证、样本偏差、非平稳性、过拟合和超参数调整等方面进行了全面的综述

使用内核技巧实现支持向量机|第16天

利用Scikit-Learning库实现了支持向量机算法,并利用核函数将数据点映射到更高的维来寻找最优超平面

在Coursera|第17天开始深度学习专业化认证

在一天内完成整个第一周和第二周。学习Logistic回归作为神经网络

Coursera上的深度学习专业化认证|第18天

完成深度学习专业化课程1。用python实现了一个神经网络。

“学习问题”,亚瑟·阿布-穆斯塔法教授(Yaser Abu-Mostafa)|第19天

开始了加州理工学院机器学习课程(CS156)第18讲中的第1讲,由Yaser Abu-Mostafa教授主讲。这基本上是对即将到来的讲座的介绍。他还解释了感知器算法

开始深度学习专业化认证课程2|第20天

完成了改进深度神经网络的第一周:超参数调整、正则化和优化

Web抓取|第21天

观看了有关如何使用美丽汤进行Web抓取的教程,以便为构建模型收集数据

学习可行吗?|第22天

加州理工学院机器学习课程(CS156)第18讲第2讲,亚瑟·阿布-穆斯塔法教授主讲。了解Hoeffding不等式

诊断树|第23天

统计学习理论简介|第24天

Bloomberg ML课程的LEC3介绍了一些核心概念,如输入空间、动作空间、结果空间、预测函数、损失函数和假设空间

实施决策树|第25天

检查代码here.

跳过复习线性代数|第26天

发现了一个令人惊叹的channel在YouTube3Blue1Brown上。它有一个名为“线性代数精髓”的播放列表。从完成4个视频开始,这些视频完整地概述了向量、线性组合、跨度、基向量、线性变换和矩阵乘法

链接到播放列表here.

跳过复习线性代数|第27天

继续播放已完成的4个视频,讨论主题3D变换、行列式、逆矩阵、列空间、零空间和非平方矩阵

链接到播放列表here.

跳过复习线性代数|第28天

在3Blue1Brown的播放列表中,完成了另外3个来自线性代数本质的视频。涵盖的主题是点积和交积

链接到播放列表here.

跳过复习线性代数|第29天

今天完成了整个播放列表,视频12-14。这真是一个令人惊叹的播放列表,可以刷新线性代数的概念。主题包括基数、特征向量和特征值的变化,以及抽象向量空间

链接到播放列表here.

微积分精髓|第30天

由3Blue1Brown完成播放列表-线性代数的精髓,这是YouTube针对同一频道3Blue1Brown再次出现的一系列视频提出的建议。上一个线性代数系列已经给我留下了深刻的印象,我直接投入其中。完成了关于导数、链式规则、乘积规则和指数导数等主题的约5个视频

链接到播放列表here.

微积分精髓|第31天

观看了2个关于微积分播放列表实质的主题隐含区分和限制的视频

链接到播放列表here.

微积分精髓|第32天

观看了剩余的4个视频,涵盖了积分和高阶导数等主题

链接到播放列表here.

随机森林|第33天

实施随机林|第34天

检查代码here.

但是什么呢?神经网络?|深度学习,第1章|第35天

由3Blue1Brown YouTube频道在神经网络上发布的令人惊叹的视频。本视频对神经网络有很好的理解,并使用手写数字数据集来解释概念。链接到video.

梯度下降,神经网络如何学习|深度学习,第2章|第36天

第二部分神经网络由3Blue1Brown YouTube频道提供。这个视频以一种有趣的方式解释了渐变下降的概念。169必看,强烈推荐。链接到video.

反向传播到底在做什么?|深度学习,第3章|第37天

第三部分神经网络由3Blue1Brown YouTube频道提供。这个视频主要讨论偏导数和反向传播。链接到video.

反向传播演算|深度学习,第4章|第38天

第四部分神经网络由3Blue1Brown YouTube频道提供。这里的目标是用一些更正式的术语来表示反向传播如何工作的直觉,以及视频中讨论偏导数和反向传播的视频。链接到video.

使用Python、TensorFlow和Kera进行深度学习教程|第39天

链接到video.

加载您自己的数据-使用Python、TensorFlow和Kera的深度学习基础知识p2|第40天

链接到video.

卷积神经网络-使用Python、TensorFlow和Kera的深度学习基础第3页|第41天

链接到video.

使用TensorBoard分析模型-使用Python、TensorFlow和Kera进行深度学习第4页|第42天

链接到video.

K表示群集|第43天

转向无监督学习,研究了聚类问题。在我的网站上工作,检查一下avikjain.me我还发现了一个很棒的动画,可以帮助您轻松理解K-Means聚类Link

K表示群集实施|第44天

实现了K均值聚类。检查代码here.

深入挖掘|NUMPY|第45天

我买了一本JK Vanderplas的新书《Python数据科学手册》Check the Jupyter Notebookhere.

从第2章:Numpy简介开始。介绍了数据类型、Numpy数组和Numpy数组上的计算等主题
检查代码-
Introduction to NumPy

Understanding Data Types in Python

The Basics of NumPy Arrays

Computation on NumPy Arrays: Universal Functions

深入挖掘|NUMPY|第46天

第二章:汇总、比较和广播
链接到笔记本电脑:
Aggregations: Min, Max, and Everything In Between

Computation on Arrays: Broadcasting

Comparisons, Masks, and Boolean Logic

深入挖掘|NUMPY|第47天

第2章:奇特索引、排序数组、结构化数据
链接到笔记本电脑:
Fancy Indexing

Sorting Arrays

Structured Data: NumPy’s Structured Arrays

更深入地挖掘|熊猫|第48天

第3章:使用熊猫进行数据操作
涵盖了各种主题,如Pandas对象、数据索引和选择、对数据的操作、处理丢失的数据、分层索引、合并和追加
指向笔记本的链接:
Data Manipulation with Pandas

Introducing Pandas Objects

Data Indexing and Selection

Operating on Data in Pandas

Handling Missing Data

Hierarchical Indexing

Combining Datasets: Concat and Append

更深地挖掘|熊猫|第49天

第3章:完成以下主题-合并和联接、聚合和分组以及透视表
Combining Datasets: Merge and Join

Aggregation and Grouping

Pivot Tables

更深入地挖掘|熊猫|第50天

第3章:矢量化字符串运算,使用时间序列
指向笔记本的链接:
Vectorized String Operations

Working with Time Series

High-Performance Pandas: eval() and query()

深挖|MATPLOTLIB|第51天

第4章:使用Matplotlib实现可视化学习简单线图、简单散点图、密度图和等高线图
指向笔记本的链接:
Visualization with Matplotlib

Simple Line Plots

Simple Scatter Plots

Visualizing Errors

Density and Contour Plots

深入挖掘|MATPLOTLIB|第52天

第4章:使用Matplotlib实现可视化学习了直方图、如何自定义绘图图例、颜色条和构建多个子图表
指向笔记本的链接:
Histograms, Binnings, and Density

Customizing Plot Legends

Customizing Colorbars

Multiple Subplots

Text and Annotation

深挖|MATPLOTLIB|第53天

第四章介绍了Mathplotlib中的三维绘图
指向笔记本的链接:
Three-Dimensional Plotting in Matplotlib

分层群集|第54天

对层次聚类进行了研究。看看这个令人惊叹的Visualization.