I was doing a fun project: Solving a Sudoku from an input image using OpenCV (as in Google goggles etc). And I have completed the task, but at the end I found a little problem for which I came here.
I did the programming using Python API of OpenCV 2.3.1.
Below is what I did :
Read the image
Find the contours
Select the one with maximum area, ( and also somewhat equivalent to square).
Find the corner points.
e.g. given below:
(Notice here that the green line correctly coincides with the true boundary of the Sudoku, so the Sudoku can be correctly warped. Check next image)
Performing the step 4 on this image gives the result below:
The red line drawn is the original contour which is the true outline of sudoku boundary.
The green line drawn is approximated contour which will be the outline of warped image.
Which of course, there is difference between green line and red line at the top edge of sudoku. So while warping, I am not getting the original boundary of the Sudoku.
My Question :
How can I warp the image on the correct boundary of the Sudoku, i.e. the red line OR how can I remove the difference between red line and green line? Is there any method for this in OpenCV?
回答 0
我有一个可行的解决方案,但是您必须自己将其转换为OpenCV。它用Mathematica编写。
第一步是通过将每个像素除以关闭操作的结果来调整图像的亮度:
src =ColorConvert[Import["http://davemark.com/images/sudoku.jpg"],"Grayscale"];
white =Closing[src,DiskMatrix[5]];
srcAdjusted =Image[ImageData[src]/ImageData[white]]
The next step is to find the sudoku area, so I can ignore (mask out) the background. For that, I use connected component analysis, and select the component that’s got the largest convex area:
I use connected component analysis again to extract the grid lines from these images. The grid lines are much longer than the digits, so I can use caliper length to select only the grid lines-connected components. Sorting them by position, I get 2×10 mask images for each of the vertical/horizontal grid lines in the image:
Next I take each pair of vertical/horizontal grid lines, dilate them, calculate the pixel-by-pixel intersection, and calculate the center of the result. These points are the grid line intersections:
All of the operations are basic image processing function, so this should be possible in OpenCV, too. The spline-based image transformation might be harder, but I don’t think you really need it. Probably using the perspective transformation you use now on each individual cell will give good enough results.
contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
centroids =[]for cnt in contour:
mom = cv2.moments(cnt)(x,y)= int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
cv2.circle(img,(x,y),4,(0,255,0),-1)
centroids.append((x,y))
但是结果质心将不会被排序。查看下图以查看其顺序:
因此,我们从左到右,从上到下对它们进行排序。
centroids = np.array(centroids,dtype = np.float32)
c = centroids.reshape((100,2))
c2 = c[np.argsort(c[:,1])]
b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])]for i in xrange(10)])
bm = b.reshape((10,10,2))
现在看下面他们的命令:
最后,我们应用转换并创建尺寸为450×450的新图像。
output = np.zeros((450,450,3),np.uint8)for i,j in enumerate(b):
ri = i/10
ci = i%10if ci !=9and ri!=9:
src = bm[ri:ri+2, ci:ci+2,:].reshape((4,2))
dst = np.array([[ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1]], np.float32)
retval = cv2.getPerspectiveTransform(src,dst)
warp = cv2.warpPerspective(res2,retval,(450,450))
output[ri*50:(ri+1)*50-1, ci*50:(ci+1)*50-1]= warp[ri*50:(ri+1)*50-1, ci*50:(ci+1)*50-1].copy()
Nikie’s answer solved my problem, but his answer was in Mathematica. So I thought I should give its OpenCV adaptation here. But after implementing I could see that OpenCV code is much bigger than nikie’s mathematica code. And also, I couldn’t find interpolation method done by nikie in OpenCV ( although it can be done using scipy, i will tell it when time comes.)
1. Image PreProcessing ( closing operation )
import cv2
import numpy as np
img = cv2.imread('dave.jpg')
img = cv2.GaussianBlur(img,(5,5),0)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
mask = np.zeros((gray.shape),np.uint8)
kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
div = np.float32(gray)/(close)
res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
Result :
2. Finding Sudoku Square and Creating Mask Image
thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
best_cnt = None
for cnt in contour:
area = cv2.contourArea(cnt)
if area > 1000:
if area > max_area:
max_area = area
best_cnt = cnt
cv2.drawContours(mask,[best_cnt],0,255,-1)
cv2.drawContours(mask,[best_cnt],0,0,2)
res = cv2.bitwise_and(res,mask)
Result :
3. Finding Vertical lines
kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))
dx = cv2.Sobel(res,cv2.CV_16S,1,0)
dx = cv2.convertScaleAbs(dx)
cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)
contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if h/w > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
closex = close.copy()
Result :
4. Finding Horizontal Lines
kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
dy = cv2.Sobel(res,cv2.CV_16S,0,2)
dy = cv2.convertScaleAbs(dy)
cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)
contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if w/h > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
closey = close.copy()
Result :
Of course, this one is not so good.
5. Finding Grid Points
res = cv2.bitwise_and(closex,closey)
Result :
6. Correcting the defects
Here, nikie does some kind of interpolation, about which I don’t have much knowledge. And i couldn’t find any corresponding function for this OpenCV. (may be it is there, i don’t know).
Check out this SOF which explains how to do this using SciPy, which I don’t want to use : Image transformation in OpenCV
So, here I took 4 corners of each sub-square and applied warp Perspective to each.
For that, first we find the centroids.
contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
centroids = []
for cnt in contour:
mom = cv2.moments(cnt)
(x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
cv2.circle(img,(x,y),4,(0,255,0),-1)
centroids.append((x,y))
But resulting centroids won’t be sorted. Check out below image to see their order:
So we sort them from left to right, top to bottom.
centroids = np.array(centroids,dtype = np.float32)
c = centroids.reshape((100,2))
c2 = c[np.argsort(c[:,1])]
b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in xrange(10)])
bm = b.reshape((10,10,2))
Now see below their order :
Finally we apply the transformation and create a new image of size 450×450.
output = np.zeros((450,450,3),np.uint8)
for i,j in enumerate(b):
ri = i/10
ci = i%10
if ci != 9 and ri!=9:
src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
retval = cv2.getPerspectiveTransform(src,dst)
warp = cv2.warpPerspective(res2,retval,(450,450))
output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
Result :
The result is almost same as nikie’s, but code length is large. May be, better methods are available out there, but until then, this works OK.
You could try to use some kind of grid based modeling of you arbitrary warping. And since the sudoku already is a grid, that shouldn’t be too hard.
So you could try to detect the boundaries of each 3×3 subregion and then warp each region individually. If the detection succeeds it would give you a better approximation.
I want to add that above method works only when sudoku board stands straight, otherwise height/width (or vice versa) ratio test will most probably fail and you will not be able to detect edges of sudoku. (I also want to add that if lines that are not perpendicular to the image borders, sobel operations (dx and dy) will still work as lines will still have edges with respect to both axes.)
To be able to detect straight lines you should work on contour or pixel-wise analysis such as contourArea/boundingRectArea, top left and bottom right points…
Edit: I managed to check whether a set of contours form a line or not by applying linear regression and checking the error. However linear regression performed poorly when slope of the line is too big (i.e. >1000) or it is very close to 0. Therefore applying the ratio test above (in most upvoted answer) before linear regression is logical and did work for me.
回答 4
为了去除未切割的角,我应用了伽玛校正,其伽玛值为0.8。
绘制红色圆圈以显示缺少的角。
代码是:
gamma =0.8
invGamma =1/gamma
table = np.array([((i /255.0)** invGamma)*255for i in np.arange(0,256)]).astype("uint8")
cv2.LUT(img, table, img)
I thought this was a great post, and a great solution by ARK; very well laid out and explained.
I was working on a similar problem, and built the entire thing. There were some changes (i.e. xrange to range, arguments in cv2.findContours), but this should work out of the box (Python 3.5, Anaconda).
This is a compilation of the elements above, with some of the missing code added (i.e., labeling of points).
'''
https://stackoverflow.com/questions/10196198/how-to-remove-convexity-defects-in-a-sudoku-square
'''
import cv2
import numpy as np
img = cv2.imread('test.png')
winname="raw image"
cv2.namedWindow(winname)
cv2.imshow(winname, img)
cv2.moveWindow(winname, 100,100)
img = cv2.GaussianBlur(img,(5,5),0)
winname="blurred"
cv2.namedWindow(winname)
cv2.imshow(winname, img)
cv2.moveWindow(winname, 100,150)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
mask = np.zeros((gray.shape),np.uint8)
kernel1 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
winname="gray"
cv2.namedWindow(winname)
cv2.imshow(winname, gray)
cv2.moveWindow(winname, 100,200)
close = cv2.morphologyEx(gray,cv2.MORPH_CLOSE,kernel1)
div = np.float32(gray)/(close)
res = np.uint8(cv2.normalize(div,div,0,255,cv2.NORM_MINMAX))
res2 = cv2.cvtColor(res,cv2.COLOR_GRAY2BGR)
winname="res2"
cv2.namedWindow(winname)
cv2.imshow(winname, res2)
cv2.moveWindow(winname, 100,250)
#find elements
thresh = cv2.adaptiveThreshold(res,255,0,1,19,2)
img_c, contour,hier = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
best_cnt = None
for cnt in contour:
area = cv2.contourArea(cnt)
if area > 1000:
if area > max_area:
max_area = area
best_cnt = cnt
cv2.drawContours(mask,[best_cnt],0,255,-1)
cv2.drawContours(mask,[best_cnt],0,0,2)
res = cv2.bitwise_and(res,mask)
winname="puzzle only"
cv2.namedWindow(winname)
cv2.imshow(winname, res)
cv2.moveWindow(winname, 100,300)
# vertical lines
kernelx = cv2.getStructuringElement(cv2.MORPH_RECT,(2,10))
dx = cv2.Sobel(res,cv2.CV_16S,1,0)
dx = cv2.convertScaleAbs(dx)
cv2.normalize(dx,dx,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dx,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernelx,iterations = 1)
img_d, contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if h/w > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_CLOSE,None,iterations = 2)
closex = close.copy()
winname="vertical lines"
cv2.namedWindow(winname)
cv2.imshow(winname, img_d)
cv2.moveWindow(winname, 100,350)
# find horizontal lines
kernely = cv2.getStructuringElement(cv2.MORPH_RECT,(10,2))
dy = cv2.Sobel(res,cv2.CV_16S,0,2)
dy = cv2.convertScaleAbs(dy)
cv2.normalize(dy,dy,0,255,cv2.NORM_MINMAX)
ret,close = cv2.threshold(dy,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,kernely)
img_e, contour, hier = cv2.findContours(close,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
x,y,w,h = cv2.boundingRect(cnt)
if w/h > 5:
cv2.drawContours(close,[cnt],0,255,-1)
else:
cv2.drawContours(close,[cnt],0,0,-1)
close = cv2.morphologyEx(close,cv2.MORPH_DILATE,None,iterations = 2)
closey = close.copy()
winname="horizontal lines"
cv2.namedWindow(winname)
cv2.imshow(winname, img_e)
cv2.moveWindow(winname, 100,400)
# intersection of these two gives dots
res = cv2.bitwise_and(closex,closey)
winname="intersections"
cv2.namedWindow(winname)
cv2.imshow(winname, res)
cv2.moveWindow(winname, 100,450)
# text blue
textcolor=(0,255,0)
# points green
pointcolor=(255,0,0)
# find centroids and sort
img_f, contour, hier = cv2.findContours(res,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
centroids = []
for cnt in contour:
mom = cv2.moments(cnt)
(x,y) = int(mom['m10']/mom['m00']), int(mom['m01']/mom['m00'])
cv2.circle(img,(x,y),4,(0,255,0),-1)
centroids.append((x,y))
# sorting
centroids = np.array(centroids,dtype = np.float32)
c = centroids.reshape((100,2))
c2 = c[np.argsort(c[:,1])]
b = np.vstack([c2[i*10:(i+1)*10][np.argsort(c2[i*10:(i+1)*10,0])] for i in range(10)])
bm = b.reshape((10,10,2))
# make copy
labeled_in_order=res2.copy()
for index, pt in enumerate(b):
cv2.putText(labeled_in_order,str(index),tuple(pt),cv2.FONT_HERSHEY_DUPLEX, 0.75, textcolor)
cv2.circle(labeled_in_order, tuple(pt), 5, pointcolor)
winname="labeled in order"
cv2.namedWindow(winname)
cv2.imshow(winname, labeled_in_order)
cv2.moveWindow(winname, 100,500)
# create final
output = np.zeros((450,450,3),np.uint8)
for i,j in enumerate(b):
ri = int(i/10) # row index
ci = i%10 # column index
if ci != 9 and ri!=9:
src = bm[ri:ri+2, ci:ci+2 , :].reshape((4,2))
dst = np.array( [ [ci*50,ri*50],[(ci+1)*50-1,ri*50],[ci*50,(ri+1)*50-1],[(ci+1)*50-1,(ri+1)*50-1] ], np.float32)
retval = cv2.getPerspectiveTransform(src,dst)
warp = cv2.warpPerspective(res2,retval,(450,450))
output[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1] = warp[ri*50:(ri+1)*50-1 , ci*50:(ci+1)*50-1].copy()
winname="final"
cv2.namedWindow(winname)
cv2.imshow(winname, output)
cv2.moveWindow(winname, 600,100)
cv2.waitKey(0)
cv2.destroyAllWindows()