标签归档:vowpal-wabbit

Mlcourse.ai-开放机器学习课程

mlcourse.ai是一门开放的机器学习课程,由OpenDataScience (ods.ai),由Yury Kashnitsky (yorko)尤里拥有应用数学博士学位和卡格尔竞赛大师学位,他的目标是设计一门理论与实践完美平衡的ML课程。因此,你可以在课堂上复习数学公式,并与Kaggle Inclass竞赛一起练习。目前,该课程正处于自定步模式检查一下详细的Roadmap引导您完成自定进度的课程。ai

奖金:此外,您还可以购买带有最佳非演示版本的奖励作业包mlcourse.ai任务。选择“Bonus Assignments” tier请参阅主页上的交易详情mlcourse.ai

镜子(🇬🇧-仅限):mlcourse.ai(主站点)、Kaggle Dataset(与Kaggle笔记本相同的笔记本)

自定

这个Roadmap将指导您度过11周的mlCourse.ai课程。每周,从熊猫到梯度助推,都会给出阅读什么文章、看什么讲座、完成什么作业的指示。

内容

这是medium.com上发表的文章列表🇬🇧,habr.com🇷🇺还提到了中文笔记本。🇨🇳并给出了指向Kaggle笔记本(英文)的链接。图标是可点击的

  1. 用PANDA软件进行探索性数据分析🇬🇧🇷🇺🇨🇳Kaggle Notebook
  2. 用Python进行可视化数据分析🇬🇧🇷🇺🇨🇳,Kaggle笔记本电脑:part1part2
  3. 分类、决策树和k近邻🇬🇧🇷🇺🇨🇳Kaggle Notebook
  4. 线性分类与回归🇬🇧🇷🇺🇨🇳,Kaggle笔记本电脑:part1part2part3part4part5
  5. 套袋与随机林🇬🇧🇷🇺🇨🇳,Kaggle笔记本电脑:part1part2part3
  6. 特征工程与特征选择🇬🇧🇷🇺🇨🇳Kaggle Notebook
  7. 无监督学习:主成分分析与聚类🇬🇧🇷🇺🇨🇳Kaggle Notebook
  8. Vowpal Wabbit:用千兆字节的数据学习🇬🇧🇷🇺🇨🇳Kaggle Notebook
  9. 用Python进行时间序列分析,第一部分🇬🇧🇷🇺🇨🇳使用Facebook Prophet预测未来,第2部分🇬🇧🇨🇳卡格尔笔记本:part1part2
  10. 梯度增压🇬🇧🇷🇺🇨🇳Kaggle Notebook

讲座

视频上传到thisYouTube播放列表。引言,videoslides

  1. 用熊猫进行探索性数据分析,video
  2. 可视化,EDA的主要情节,video
  3. 诊断树:theorypractical part
  4. Logistic回归:theoretical foundationspractical part(《爱丽丝》比赛中的基线)
  5. 合奏和随机森林-part 1分类指标-part 2预测客户付款的业务任务示例-part 3
  6. 线性回归和正则化-theory,Lasso&Ridge,LTV预测-practice
  7. 无监督学习-Principal Component AnalysisClustering
  8. 用于分类和回归的随机梯度下降-part 1,第2部分TBA
  9. 用Python(ARIMA,PERPHET)进行时间序列分析-video
  10. 梯度增压:基本思路-part 1、XgBoost、LightGBM和CatBoost+Practice背后的关键理念-part 2

作业

以下是演示作业。此外,在“Bonus Assignments” tier您可以访问非演示作业

  1. 用熊猫进行探索性数据分析,nbviewerKaggle Notebooksolution
  2. 分析心血管疾病数据,nbviewerKaggle Notebooksolution
  3. 带有玩具任务和UCI成人数据集的决策树,nbviewerKaggle Notebooksolution
  4. 讽刺检测,Kaggle Notebooksolution线性回归作为一个最优化问题,nbviewerKaggle Notebook
  5. Logistic回归和随机森林在信用评分问题中的应用nbviewerKaggle Notebooksolution
  6. 在回归任务中探索OLS、LASSO和随机森林nbviewerKaggle Notebooksolution
  7. 无监督学习,nbviewerKaggle Notebooksolution
  8. 实现在线回归,nbviewerKaggle Notebooksolution
  9. 时间序列分析,nbviewerKaggle Notebooksolution
  10. 在比赛中超越底线,Kaggle Notebook

卡格尔竞赛

  1. 如果可以,请抓住我:通过网页会话跟踪检测入侵者。Kaggle Inclass
  2. Dota 2获胜者预测。Kaggle Inclass

引用mlCourse.ai

如果你碰巧引用了mlcourse.ai在您的工作中,您可以使用此BibTeX记录:

@misc{mlcourse_ai,
    author = {Kashnitsky, Yury},
    title = {mlcourse.ai – Open Machine Learning Course},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/Yorko/mlcourse.ai}},
}

社区

讨论在#mlCourse_ai世界上最重要的一条航道OpenDataScience (ods.ai)松懈团队

课程是免费的,但你可以通过承诺以下内容来支持组织者Patreon(每月支持)或一次性付款Ko-fi