分类目录归档:开发工具

Python 超强文献下载工具 Scihub-cn 又更新啦!

Scihub-cn 开发维护到现在已经2年多了,感谢各位朋友的使用和支持,尤其是那些参与开源贡献的朋友,本人工作比较繁忙,正是有这些朋友帮忙维护和改进项目,才给这个项目提供了长久的生命力,非常感谢他们。

本次升级主要是修复Scihub-cn下载的时候总是报 “scihub数据库不存在这篇论文!” 的错误,这个错误是由于scihub反爬及页面改版导致的。前几个月Scihub-cn一直处于无法使用的状态,现在你只要更新最新版代码就可以使用了。

接下来还是给大家正式介绍一下使用方式。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install --upgrade scihub-cn

2.Scihub-cn 使用方法

2.1 使用DOI号下载论文

首先让我们来试试根据DOI号下载文献:

scihub-cn -d 10.1038/s41524-017-0032-0

下载的论文会自动生成在当前文件夹下:

你也可以选择将其下载到任意目录下,只需要添加 -o 参数:

scihub-cn -d 10.1038/s41524-017-0032-0 -o D:\papers

这将会把这篇论文下载到D盘的papers文件夹中。

2.2 根据关键词下载论文

使用 -w 参数指定一个关键词,可以通过关键词下载论文:

scihub-cn -w reinforcement

同样滴,它也支持-o参数指定文件夹。此外,这里默认使用的搜索引擎是百度学术,你也可以使用Google学术、publons、science_direct等。通过指定 -e 参数即可:

scihub-cn -w reinforcement -e google_scholar

为了避免Google学术无法连接,你还可以增加代理 -p 参数:

scihub-cn -w reinforcement -e google_scholar -p http://127.0.0.1:10808

访问外网数据源的时候,增加代理能避免出现Connection closed等问题。

此外,你还能限定下载的篇目, 比如我希望下载100篇文章:

scihub-cn -w reinforcement -l 100

2.3 根据url下载论文

给定任意论文地址,可以让scihub-cn尝试去下载该论文:

scihub-cn -u https://ieeexplore.ieee.org/document/26502

使用 -u 参数指定论文链接即可,非常方便。

3.批量下载论文

当然,之前花了几篇文章优化的批量下载模块这个版本肯定少不了!

而且还增加了几种新的批量下载方式:

1. 根据给出所有论文名称的txt文本文件下载论文。

2. 根据给出所有论文url的txt文件下载论文。

3. 根据给出所有论文DOI号的txt文本文件下载论文。

4. 根据给出bibtex文件下载论文。

比如,根据给出所有论文URL的txt文件下载论文:

scihub-cn -i urls.txt --url

可以看到,文件内有4个论文链接,而他也成功地下载到了这4篇论文。

再试试放了DOI号的txt文件的批量下载:

scihub-cn -i dois.txt --doi

你可以输入 scihub-cn –help 看到更多的参数说明:

$scihub-cn --help
... ...
optional arguments:
  -h, --help            show this help message and exit
  -u URL                input the download url
  -d DOI                input the download doi
  --input INPUTFILE, -i INPUTFILE
                        input download file
  -w WORDS, --words WORDS
                        download from some key words,keywords are linked by
                        _,like machine_learning.
  --title               download from paper titles file
  -p PROXY, --proxy PROXY
                        use proxy to download papers
  --output OUTPUT, -o OUTPUT
                        setting output path
  --doi                 download paper from dois file
  --bib                 download papers from bibtex file
  --url                 download paper from url file
  -e SEARCH_ENGINE, --engine SEARCH_ENGINE
                        set the search engine
  -l LIMIT, --limit LIMIT
                        limit the number of search result

大家如果有更多的想法,可以往我们这个开源项目贡献代码:

https://github.com/Ckend/scihub-cn

本文仅限参考研究,下载的论文请在24小时内阅读后删除,请勿将此项目用于商业目的。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python 通过阿里云日志服务上传日志并监控告警

在我们的日常生活工作中,经常会遇到需要上传日志的场景,比如多台机器运行同一个程序,并且需要记录每台机器程序产生的日志,根据相关关键词告警,或者进行无数据告警,如果自己搭建这套系统需要耗费不少时间,因此如果能使用市面上现成的系统会很方便。

本文将教你如何通过阿里云日志服务搭建一套通过Python上传日志、配置日志告警的监控服务。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install aliyun-log-python-sdk

接下来,登陆阿里云控制台,进入日志应用,通过下面的步骤创建日志Project和Logstore:

点击Python – SDK 写入,再根据你的需要创建Project和Logstore:

随后会进入这个页面,直接点击确定即可:

2.使用阿里云SDK上传Python日志

为了使用阿里云SDK上传日志,我们需要先获取Access Token, 将鼠标移动到右上角头像上点击AccessKey管理:

然后点击创建AccessKey,输入相关验证信息就能获取 accessKeyId 和 accessKey:

编写Python代码,配置AccessKey和你在第一步骤创建的Project及logstore名称:

from aliyun.log import LogClient, PutLogsRequest, LogItem, GetLogsRequest, IndexConfig
import time

# 配置AccessKey、服务入口、Project名称、Logstore名称等相关信息。
# 阿里云访问密钥AccessKey。更多信息,请参见访问密钥。
# 阿里云账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM用户进行API访问或日常运维。
accessKeyId = "你的AccessKey ID"
accessKey = "你的AccessKey"
# 日志服务的域名。更多信息,请参见服务入口。此处以广州为例,其它地域请根据实际情况填写。
endpoint = "cn-guangzhou.log.aliyuncs.com"

# 创建日志服务Client。
client = LogClient(endpoint, accessKeyId, accessKey)

# Project名称。
project_name = "aliyun-test-project"
#Logstore名称
logstore_name = "aliyun-test-logstore"
# 查询语句。
query = "*| select dev,id from " + logstore_name
# from_time和to_time表示查询日志的时间范围,Unix时间戳格式。
from_time = int(time.time()) - 3600
to_time = time.time() + 3600

然后我们就可以编写Python代码创建索引(日志的索引可以理解为MySQL中的数据库)和插入日志了:

# 向Logstore写入数据。
def put_logs():
    print("ready to put logs for %s" % logstore_name)
    log_group = []
    for i in range(0, 100):
        log_item = LogItem()
        contents = [
            ('dev', 'test_put'),
            ('id', str(i))
        ]
        log_item.set_contents(contents)
        log_group.append(log_item)
    request = PutLogsRequest(project_name, logstore_name, "", "", log_group, compress=False)
    client.put_logs(request)
    print("put logs for %s success " % logstore_name)
    time.sleep(5)

if __name__ == '__main__':
    # 向Logstore写入数据。
    put_logs()

运行程序后出现对应的提示,说明日志上传成功:

python test.py
# ready to put logs for tradingview
# put logs for tradingview success 

进入控制台对应的Project,你会看到刚刚上传的日志已经显示在上面:

3.配置日志告警

日志告警的配置也非常简单,输入你的查询条件,获得输出后点击上方另存为告警:

在查询统计中添加你需要监控并触发告警的条件,比如我设置出现一次该日志的时候触发告警:

效果如下,我这里文本配置得太简单了,你也可以在标注中配置复杂一点的文本:

用起来挺方便的,如果你有类似的多机器日志监控服务,比如分布式模型训练监控、交易服务监控等等,可以考虑使用这个日志服务。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Asciinema – 终端日志记录神器,机器学习开发者的福音

我们在做机器学习/深度学习开发的时候,经常会产生如下所示的大量日志:

这些日志如果不保存,转瞬即逝,当我们想要回去翻看某一轮训练日志的时候,会很遗憾的发现找不到了。

现在有了这个 Asciinema 这个神器,我们不仅能找到当时的终端日志导出,还能够“重播日志”并“分享日志”。非常牛逼:

Asciinema 是使用Python开发的工具,请按下面的流程安装并使用。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install asciinema

2.Asciinema 使用方法

终端输入如下命令,记录你的第一个终端日志:

asciinema rec first.cast

输入完成后会显示如下的提示:

(gs3_9) zjr@sgd-linux-1:~/cnn_test$ asciinema rec first.cast
  
asciinema: recording asciicast to first.cast
asciinema: press <ctrl-d> or type "exit" when you're done

意思就是日志会被保存在当前文件夹下的first.cast,如果你想结束录制,按 Ctrl + D 即可。

记录完毕后,以双倍速度重播该日志:

asciinema play -s 2 first.cast

或以正常速度但空闲时间限制为 2 秒:

asciinema play -i 2 first.cast

你也可以在启动终端日志录制时传递 -i 2 asciinema rec,将其永久设置在录制中:

asciinema rec first.cast -i 2

空闲时间的限制使录制更有趣。试试吧。

如果你想在网络上观看和分享,请上传:

asciinema upload first.cast

这个命令会将日志记录上传到 asciinema.org,此外,它会打印一个秘密链接,你可以使用该链接在网络浏览器中观看你录制的终端日志:

你可以通过省略文件名一步录制和上传终端的日志:

asciinema rec

录制完成后,系统会要求你确认上传。未经你的同意,不会向任何地方发送任何内容。

3.播放日志

查看日志有四种方式,最普通的是通过本地文件进行终端重播:

asciinema play /path/to/asciicast.cast

以下键盘快捷键可用:

  • Space– 暂停,
  • .– 按帧步进(暂停时),
  • Ctrl+C– 退出

第二种方式是通过url播放:

asciinema play https://asciinema.org/a/22124.cast
asciinema play http://example.com/demo.cast

这个方式需要你的日志已经上传到asciinema.org中。

第三种方式是通过你自己生成的html页面访问(需要<link rel="alternate" type="application/x-asciicast" href="/my/ascii.cast">在页面的 HTML 中):

asciinema play http://your_html_path/post.html

第四种方式是通过标准输入输出播放:

cat /path/to/asciicast.cast | asciinema play -
ssh user@host cat asciicast.cast | asciinema play -

可用选项:

  • -i, --idle-time-limit=<sec>– 将重播的终端空闲不动时间闲置为最大<sec>秒数
  • -s, --speed=<factor>– 播放速度

4.导出日志

导出终端日志到文本文件非常简单:

asciinema cat existing.cast > terminal_output.txt

所有的终端日志都会被导出到 terminal_output.txt 中,非常方便好用。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Python超好用的命令行参数工具—Click

Click 是一个简洁好用的Python模块,它能用尽量少的代码实现漂亮的命令行界面。它不仅开箱即用、还能支持高度自定义的配置。

一个简单的示例如下:

import click

@click.command()
@click.option('--count', default=1, help='Number of greetings.')
@click.option('--name', prompt='Your name',
              help='The person to greet.')
def hello(count, name):
    """Simple program that greets NAME for a total of COUNT times."""
    for x in range(count):
        click.echo(f"Hello {name}!")

if __name__ == '__main__':
    hello()

效果如下:

可见这个模块的强大之处,你只需要在对应的函数上加几个装饰器,就能实现带提示符的命令行界面的创建,相当方便。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install click

2.基本使用

如文首所示的例子一样,@click.option 是最基本的选项,它既可以设定参数默认值,也可以设定必须传入参数:

@click.command()
@click.option('--n', default=1) # 设定了默认值
def dots(n):
    click.echo('.' * n)
    

@click.command()
@click.option('--n', required=True, type=int) # 设定必须传入参数值
def dots(n):
    click.echo('.' * n)

如果你设置了必须传入相关参数,那么在没传入参数的情况下,效果是这样的:

当然,它还支持设定多种参数别名,比如下面的 –from 和 -f 是等效的:

@click.command()
@click.option('--from', '-f', 'from_')
@click.option('--to', '-t')
def reserved_param_name(from_, to):
    click.echo(f"from {from_} to {to}")

3.多值参数

如果你的选项需要多个参数,Click也能帮你实现这个需求。

@click.command()
@click.option('--pos', nargs=2, type=float)
def findme(pos):
    a, b = pos
    click.echo(f"{a} / {b}")

可见,通过配置nargs参数,你可以将用户传递的值存入元组,并在代码中解包这个元组拿到所有的值。

效果如下:

你还可以配置一个参数叫 multiple,这个参数可以让你接受N个值:

@click.command()
@click.option('--message', '-m', multiple=True)
def commit(message):
    click.echo(' '.join(message))

效果如下:

4.其他功能

你还可以使用Click来计数,这个使用非常罕见:

@click.command()
@click.option('-v', '--verbose', count=True)
def log(verbose):
    click.echo(f"Verbosity: {verbose}")

效果如下:

布尔标志

此外,Click还带有布尔标志功能,你可以直接使用 “/” 来标志参数为二选一参数,函数中直接就会拿到布尔型的变量:

import sys

@click.command()
@click.option('--shout/--no-shout', default=False)
def info(shout):
    rv = sys.platform
    if shout:
        rv = rv.upper() + '!!!!111'
    click.echo(rv)

效果如下:

选择选项

你可以直接限定用户的输入范围:

@click.command()
@click.option('--hash-type',
              type=click.Choice(['MD5', 'SHA1'], case_sensitive=False))
def digest(hash_type):
    click.echo(hash_type)

提示文本

在文首提到的例子中,输出了个 “You name:” 的提示,其实是 option 中的prompt参数控制的:

@click.command()
@click.option('--name', prompt='Your name please')
def hello(name):
    click.echo(f"Hello {name}!")

好了,Click的功能就介绍到这里,他还有许多高级的用法,比如动态默认值、回调函数等等,大家可以通过官方文档了解这些高级功能的使用方法:

https://click.palletsprojects.com/en/8.0.x/options/#name-your-options

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Pydantic — 强大的数据校验工具,比DRF快12倍

Pydantic 是一个使用Python类型注解进行数据验证和管理的模块。安装方法非常简单,打开终端输入:

pip install pydantic

它类似于 Django DRF 序列化器的数据校验功能,不同的是,Django里的序列化器的Field是有限制的,如果你想要使用自己的Field还需要继承并重写它的基类:

# Django 序列化器
class Book(models.Model):
    id = models.AutoField(primary_key=True)
    name = models.CharField(max_length=32)
    price = models.DecimalField(max_digits=5, decimal_places=2)
    author = models.CharField(max_length=32)
    publish = models.CharField(max_length=32)

而 Pydantic 基于Python3.7以上的类型注解特性,实现了可以对任何类做数据校验的功能:

# Pydantic 数据校验功能
from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel


class User(BaseModel):
    id: int
    name = 'John Doe'
    signup_ts: Optional[datetime] = None
    friends: List[int] = []


external_data = {
    'id': '123',
    'signup_ts': '2019-06-01 12:22',
    'friends': [1, 2, '3'],
}
user = User(**external_data)
print(user.id)
print(type(user.id))
#> 123
#> <class 'int'>
print(repr(user.signup_ts))
#> datetime.datetime(2019, 6, 1, 12, 22)
print(user.friends)
#> [1, 2, 3]
print(user.dict())
"""
{
    'id': 123,
    'signup_ts': datetime.datetime(2019, 6, 1, 12, 22),
    'friends': [1, 2, 3],
    'name': 'John Doe',
}
"""

从上面的基本使用可以看到,它甚至能自动帮你做数据类型的转换,比如代码中的 user.id, 在字典中是字符串,但经过Pydantic校验器后,它自动变成了int型,因为User类里的注解就是int型。

当我们的数据和定义的注解类型不一致时会报这样的Error:

from datetime import datetime
from typing import List, Optional
from pydantic import BaseModel


class User(BaseModel):
    id: int
    name = 'John Doe'
    signup_ts: Optional[datetime] = None
    friends: List[int] = []


external_data = {
    'id': '123',
    'signup_ts': '2019-06-01 12:222',
    'friends': [1, 2, '3'],
}
user = User(**external_data)
"""
Traceback (most recent call last):
  File "1.py", line 18, in <module>
    user = User(**external_data)
  File "pydantic\main.py", line 331, in pydantic.main.BaseModel.__init__
pydantic.error_wrappers.ValidationError: 1 validation error for User
signup_ts
  invalid datetime format (type=value_error.datetime)
"""

即 “invalid datetime format”, 因为我传入的 signup_ts 不是标准的时间格式(多了个2)。

1.Pydantic 模型数据导出

通过Pydantic模型中自带的 json 属性方法,能让经过校验后的数据一行命令直接转成 json 字符串,如前文中的user对象:

print(user.dict())  # 转为字典
"""
{
    'id': 123,
    'signup_ts': datetime.datetime(2019, 6, 1, 12, 22),
    'friends': [1, 2, 3],
    'name': 'John Doe',
}
"""
print(user.json())  # 转为json
"""
{"id": 123, "signup_ts": "2019-06-01T12:22:00", "friends": [1, 2, 3], "name": "John Doe"}
"""

非常方便。它还支持将整个数据结构导出为 schema json,它能完整地描述整个对象的数据结构类型:

print(user.schema_json(indent=2))
"""
{
  "title": "User",
  "type": "object",
  "properties": {
    "id": {
      "title": "Id",
      "type": "integer"
    },
    "signup_ts": {
      "title": "Signup Ts",
      "type": "string",
      "format": "date-time"
    },
    "friends": {
      "title": "Friends",
      "default": [],
      "type": "array",
      "items": {
        "type": "integer"
      }
    },
    "name": {
      "title": "Name",
      "default": "John Doe",
      "type": "string"
    }
  },
  "required": [
    "id"
  ]
}
"""

2.数据导入

除了直接定义数据校验模型,它还能通过ORM、字符串、文件导入到数据校验模型:

比如字符串(raw):

from datetime import datetime
from pydantic import BaseModel


class User(BaseModel):
    id: int
    name = 'John Doe'
    signup_ts: datetime = None
      
m = User.parse_raw('{"id": 123, "name": "James"}')
print(m)
#> id=123 signup_ts=None name='James'

此外,它能直接将ORM的对象输入,转为Pydantic的对象,比如从Sqlalchemy ORM:

from typing import List
from sqlalchemy import Column, Integer, String
from sqlalchemy.dialects.postgresql import ARRAY
from sqlalchemy.ext.declarative import declarative_base
from pydantic import BaseModel, constr

Base = declarative_base()


class CompanyOrm(Base):
    __tablename__ = 'companies'
    id = Column(Integer, primary_key=True, nullable=False)
    public_key = Column(String(20), index=True, nullable=False, unique=True)
    name = Column(String(63), unique=True)
    domains = Column(ARRAY(String(255)))


class CompanyModel(BaseModel):
    id: int
    public_key: constr(max_length=20)
    name: constr(max_length=63)
    domains: List[constr(max_length=255)]

    class Config:
        orm_mode = True


co_orm = CompanyOrm(
    id=123,
    public_key='foobar',
    name='Testing',
    domains=['example.com', 'foobar.com'],
)
print(co_orm)
#> <models_orm_mode.CompanyOrm object at 0x7f0bdac44850>
co_model = CompanyModel.from_orm(co_orm)
print(co_model)
#> id=123 public_key='foobar' name='Testing' domains=['example.com',
#> 'foobar.com']

从Json文件导入:

from datetime import datetime
from pathlib import Path
from pydantic import BaseModel


class User(BaseModel):
    id: int
    name = 'John Doe'
    signup_ts: datetime = None
      
path = Path('data.json')
path.write_text('{"id": 123, "name": "James"}')
m = User.parse_file(path)
print(m)

从pickle导入:

import pickle
from datetime import datetime
from pydantic import BaseModel

pickle_data = pickle.dumps({
    'id': 123,
    'name': 'James',
    'signup_ts': datetime(2017, 7, 14)
})
m = User.parse_raw(
    pickle_data, content_type='application/pickle', allow_pickle=True
)
print(m)
#> id=123 signup_ts=datetime.datetime(2017, 7, 14, 0, 0) name='James'

3.自定义数据校验

你还能给它增加 validator 装饰器,增加你需要的校验逻辑:

from pydantic import BaseModel, ValidationError, validator


class UserModel(BaseModel):
    name: str
    username: str
    password1: str
    password2: str

    @validator('name')
    def name_must_contain_space(cls, v):
        if ' ' not in v:
            raise ValueError('must contain a space')
        return v.title()

    @validator('password2')
    def passwords_match(cls, v, values, **kwargs):
        if 'password1' in values and v != values['password1']:
            raise ValueError('passwords do not match')
        return v

    @validator('username')
    def username_alphanumeric(cls, v):
        assert v.isalnum(), 'must be alphanumeric'
        return v

上面,我们增加了三种自定义校验逻辑:

1.name 必须带有空格

2.password2 必须和 password1 相同

3.username 必须为字母

让我们试试这三个校验是否成功实现:

user = UserModel(
    name='samuel colvin',
    username='scolvin',
    password1='zxcvbn',
    password2='zxcvbn',
)
print(user)
#> name='Samuel Colvin' username='scolvin' password1='zxcvbn' password2='zxcvbn'

try:
    UserModel(
        name='samuel',
        username='scolvin',
        password1='zxcvbn',
        password2='zxcvbn2',
    )
except ValidationError as e:
    print(e)
    """
    2 validation errors for UserModel
    name
      must contain a space (type=value_error)
    password2
      passwords do not match (type=value_error)
    """

可以看到,第一个UserModel里的数据完全没有问题,通过校验。

第二个UserModel里的数据,由于name存在空格,password2和password1不一致,无法通过校验。

4.性能表现

这是最令我惊讶的部分,Pydantic 比 Django-rest-framework 还快了12.3倍:

PackageVersionRelative PerformanceMean validation time
pydantic1.7.393.7μs
attrs + cattrs20.3.01.5x slower143.6μs
valideer0.4.21.9x slower175.9μs
marshmallow3.10.02.4x slower227.6μs
voluptuous0.12.12.7x slower257.5μs
trafaret2.1.03.2x slower296.7μs
schematics2.1.010.2x slower955.5μs
django-rest-framework3.12.212.3x slower1148.4μs
cerberus1.3.225.9x slower2427.6μs

而且他们的所有基准测试代码都是开源的,你可以在下面这个Github链接找到:

https://github.com/samuelcolvin/pydantic/tree/master/benchmarks

如果你的网络无法访问GitHub,请关注Python实用宝典公众号后台回复Pydantic获取。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

新年新气象,超级文献下载工具更新了!一行命令下载全网任意文献

之前为了解决学生无力支付国内部分论文平台的付费阅读功能的问题,我们推出了超级文献下载工具:你不得不知道的python超级文献批量搜索下载工具

在最初的这几个版本中,我们必须通过编写代码才能选择不同的文献源去搜索和下载文献。很多同学在使用过程中会由于对Python不熟悉或者环境没有配置好而产生不少问题。

为了解决这些问题,我们给他增加了命令行调用的方式,并上传到了PyPi,你只需要一行命令,就能下载到你所需要的文献!(感谢 @hulei6188 的开源贡献)

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install scihub-cn

看到 Successfully installed … 就代表成功安装scihub-cn。

不过请注意,scihub-cn依赖 aiohttp 模块进行并发的下载,因此支持的最低Python版本为3.6.

项目源代码:https://github.com/Ckend/scihub-cn

2.Scihub-cn 使用方法

2.1 使用DOI号下载论文

首先让我们来试试根据DOI号下载文献:

scihub-cn -d 10.1038/s41524-017-0032-0

下载的论文会自动生成在当前文件夹下:

你也可以选择将其下载到任意目录下,只需要添加 -o 参数:

scihub-cn -d 10.1038/s41524-017-0032-0 -o D:\papers

这将会把这篇论文下载到D盘的papers文件夹中。

2.2 根据关键词下载论文

使用 -w 参数指定一个关键词,可以通过关键词下载论文:

scihub-cn -w reinforcement

同样滴,它也支持-o参数指定文件夹。此外,这里默认使用的搜索引擎是百度学术,你也可以使用Google学术、publons、science_direct等。通过指定 -e 参数即可:

scihub-cn -w reinforcement -e google_scholar

为了避免Google学术无法连接,你还可以增加代理 -p 参数:

scihub-cn -w reinforcement -e google_scholar -p http://127.0.0.1:10808

访问外网数据源的时候,增加代理能避免出现Connection closed等问题。

此外,你还能限定下载的篇目, 比如我希望下载100篇文章:

scihub-cn -w reinforcement -l 100

2.3 根据url下载论文

给定任意论文地址,可以让scihub-cn尝试去下载该论文:

scihub-cn -u https://ieeexplore.ieee.org/document/26502

使用 -u 参数指定论文链接即可,非常方便。

3.批量下载论文

当然,之前花了几篇文章优化的批量下载模块这个版本肯定少不了!

而且还增加了几种新的批量下载方式:

1. 根据给出所有论文名称的txt文本文件下载论文。

2. 根据给出所有论文url的txt文件下载论文。

3. 根据给出所有论文DOI号的txt文本文件下载论文。

4. 根据给出bibtex文件下载论文。

比如,根据给出所有论文URL的txt文件下载论文:

scihub-cn -i urls.txt --url

可以看到,文件内有4个论文链接,而他也成功地下载到了这4篇论文。

再试试放了DOI号的txt文件的批量下载:

scihub-cn -i dois.txt --doi

你可以输入 scihub-cn –help 看到更多的参数说明:

$scihub-cn --help
... ...
optional arguments:
  -h, --help            show this help message and exit
  -u URL                input the download url
  -d DOI                input the download doi
  --input INPUTFILE, -i INPUTFILE
                        input download file
  -w WORDS, --words WORDS
                        download from some key words,keywords are linked by
                        _,like machine_learning.
  --title               download from paper titles file
  -p PROXY, --proxy PROXY
                        use proxy to download papers
  --output OUTPUT, -o OUTPUT
                        setting output path
  --doi                 download paper from dois file
  --bib                 download papers from bibtex file
  --url                 download paper from url file
  -e SEARCH_ENGINE, --engine SEARCH_ENGINE
                        set the search engine
  -l LIMIT, --limit LIMIT
                        limit the number of search result

大家如果有更多的想法,可以往我们这个开源项目贡献代码:

https://github.com/Ckend/scihub-cn

本文仅限参考研究,下载的论文请在24小时内阅读后删除,请勿将此项目用于商业目的。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Dynaconf 轻松实现 Python 动态配置管理

Dynaconf 是一个库,旨在成为在 Python 中管理配置的最佳选择。

它可以从各种来源读取设置,包括环境变量、文件、服务器配置等。

它适用于任何类型的 Python 程序,包括 Flask 和 Django 扩展。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install dynaconf

2.初步使用DynaConf

在你的项目的根目录中运行 dynaconf init 命令。

cd path/to/your/project/
dynaconf init -f toml

会有类似如下的输出,说明初始化完成:

⚙️  Configuring your Dynaconf environment
------------------------------------------
🐍 The file `config.py` was generated.

🎛️  settings.toml created to hold your settings.

🔑 .secrets.toml created to hold your secrets.

🙈 the .secrets.* is also included in `.gitignore`
beware to not push your secrets to a public repo.

🎉 Dynaconf is configured! read more on https://dynaconf.com

刚刚初始化的时候我们选择了 toml 格式。实际上你还可以选择 toml|yaml|json|ini|py,不过 toml 是默认的,也是最推荐的配置格式。

初始化完成后会创建以下文件:

.
├── config.py       # 需要被导入的配置脚本
├── .secrets.toml   # 像密码等敏感信息配置
└── settings.toml   # 应用配置

初始化完成后你就可以编写你的配置,编辑settings.toml:

key = "value"
a_boolean = false
number = 1234
a_float = 56.8
a_list = [1, 2, 3, 4]
a_dict = {hello="world"}

[a_dict.nested]
other_level = "nested value"

然后就可以在你的代码中导入并使用这些配置:

from config import settings

assert settings.key == "value"
assert settings.number == 789
assert settings.a_dict.nested.other_level == "nested value"
assert settings['a_boolean'] is False
assert settings.get("DONTEXIST", default=1) == 1

如果是密码等敏感信息,你可以配置在 .secrets.toml 中:

password = "s3cr3t"
token = "dfgrfg5d4g56ds4gsdf5g74984we5345-"
message = "This file doesn't go to your pub repo"

.secrets.toml 文件会被自动加入到 .gitignore 文件中,这些信息不会被上传到Git仓库上。

同时,DYNACONF还支持带前缀的环境变量:

export DYNACONF_NUMBER=789
export DYNACONF_FOO=false
export DYNACONF_DATA__CAN__BE__NESTED=value
export DYNACONF_FORMATTED_KEY="@format {this.FOO}/BAR"
export DYNACONF_TEMPLATED_KEY="@jinja {{ env['HOME'] | abspath }}"

3.高级使用

你还可以在Flask或Django中使用DynaConf,以Django为例,第一步要先确保已经设置 DJANGO_SETTINGS_MODULE 环境变量:

export DJANGO_SETTINGS_MODULE=yourproject.settings

然后在 manage.py 相同文件夹下运行初始化命令:

dynaconf init -f yaml

然后按照终端上的说明进行操作:

Django app detected
⚙️  Configuring your Dynaconf environment
------------------------------------------
🎛️  settings.yaml created to hold your settings.

🔑 .secrets.yaml created to hold your secrets.

🙈 the .secrets.yaml is also included in `.gitignore`
beware to not push your secrets to a public repo
or use dynaconf builtin support for Vault Servers.

⁉  path/to/yourproject/settings.py is found do you want to add dynaconf? [y/N]:

回答 y:

🎠  Now your Django settings are managed by Dynaconf
🎉  Dynaconf is configured! read more on https://dynaconf.com

在 Django 上,推荐的文件格式是yaml,因为它可以更轻松地保存复杂的数据结构,但是你依然可以选择使用 toml、json、ini 甚至将你的配置保存为 .py 格式。

初始化 dynaconf 后,在现有的settings.py底部包含以下内容:

# HERE STARTS DYNACONF EXTENSION LOAD
import dynaconf  # noqa
settings = dynaconf.DjangoDynaconf(__name__)  # noqa
# HERE ENDS DYNACONF EXTENSION LOAD (No more code below this line)

现在,在你的 Django 视图、模型和所有其他地方,你现在可以正常使用 django.conf.settings,因为它已被 Dynaconf 设置对象替换。

from django.conf import settings


def index(request):
    assert settings.DEBUG is True
    assert settings.NAME == "Bruno"
    assert settings.DATABASES.default.name == "db"
    assert settings.get("NONEXISTENT", 2) == 2

现在,通过修改 manage.py 相同文件夹下的配置文件,就能让配置全局生效了。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Box 为你的字典添加点符号访问特性

正常情况下,我们想访问字典中的某个值,都是通过中括号访问,比如:

test_dict = {"test": {"imdb stars": 6.7, "length": 104}}

print(test_dict["test"]["imdb stars"])
# 104

而通过Box模块,我们可以扩展字典功能,使用点符号访问元素:

from box import Box

movie_box = Box({ "Robin Hood: Men in Tights": { "imdb stars": 6.7, "length": 104 } })

movie_box.Robin_Hood_Men_in_Tights.imdb_stars

# 6.7

另外,可以看到默认情况下转换后,字典键值中的空格被转化为了下划线。

下面具体介绍 Box 模块的使用方法。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install --upgrade python-box[all]

2.基本使用

我们可以像文章开头那样传入一个字典给 Box,生成一个Box对象;也可以直接使用参数赋值的方式生成一个Box对象:

from box import Box

my_box = Box(funny_movie='Hudson Hawk', best_movie='Kung Fu Panda')
my_box.funny_movie
# 'Hudson Hawk'

请记住,任何情况下,你往Box对象里添加字典或是数组,这些字典或数组都会被转变为Box对象:

my_box = Box({"team": {"red": {"leader": "Sarge", "members": []}}})
print(my_box.team.red.leader)
# Sarge

my_box.team.blue = {"leader": "Church", "members": []} 
print(repr(my_box.team.blue))
# <Box: {'leader': 'Church', 'members': []}>

访问列表中的 Box 对象也非常轻松:

my_box.team.red.members = [
    {"name": "Grif", "rank": "Minor Junior Private Negative First Class"},
    {"name": "Dick Simmons", "rank": "Captain"}
]

print(my_box.team.red.members[0].name)
# Grif

局限性

请注意,字典中有些默认方法,如:clear, copy, fromkeys, get, items, keys, pop, popitem, setdefault, to_dict, update, merge_update, values,当你的键值和这些方法名称冲突时,你无法使用点符号访问它们。

不过冲突时,你依然可以使用传统的字典取值访问它们,例如:

my_box['keys']

合并

要合并两个Box对象,你只需要通过 merge_update 方法:

from box import Box

box_1 = Box(val={'important_key': 1}) 
box_2 = Box(val={'less_important_key': 2})

box_1.merge_update(box_2)

print(box_1)
# {'val': {'important_key': 1, 'less_important_key': 2}}

当然,你也可以用传统的 update 方法:

from box import Box

box_1 = Box(val={'important_key': 1}) 
box_2 = Box(val={'less_important_key': 2})

box_1.update(box_2)

print(box_1)
# {'val': {'less_important_key': 2}}

转换为原始列表/字典

如果你需要把一个 Box 对象的字典转化为原始字典,.to_dict() 方法就可以帮你实现:

from box import Box

box_1 = Box(val={'important_key': 1}) 

print(box_1)
# {'val': {'less_important_key': 2}}
print(type(box_1))
# <class 'box.box.Box'>
print(type(box_1.to_dict()))
# <class 'dict'>

如果你需要把一个 Box 对象的列表转化为原始列表,你可以使用 .to_list() 方法:

from box import BoxList

my_boxlist = BoxList({'item': x} for x in range(10))
#  <BoxList: [<Box: {'item': 0}>, <Box: {'item': 1}>, ...

my_boxlist[5].item
# 5

print(type(my_boxlist.to_list()))
# <class 'list'>

3.导入导出功能

Box对象有一个很方便的功能,就是能够轻松地将Box对象导出为Json/yaml/csv/msgpack文件:

from box import BoxList

my_boxlist = BoxList({'item': x} for x in range(10))
#  <BoxList: [<Box: {'item': 0}>, <Box: {'item': 1}>, ...

my_boxlist.to_json(filename="test.json")
# 在当前文件夹下生成一个 test.json 文件

此外,还能接受 Json/yaml/csv/msgpack 文件导入:

new_box = Box.from_json(filename="films.json")

各种类型的文件对应的方法如下:

转换器方法描述
to_dict递归地将所有 Box(和 BoxList)对象转换回字典(和列表)
to_json将 Box 对象另存为 JSON 字符串或使用filename参数写入文件
to_yaml将 Box 对象另存为 YAML 字符串或使用filename参数写入文件
to_msgpack将 Box 对象另存为 msgpack 字节或使用filename参数写入文件
to_toml*将 Box 对象另存为 TOML 字符串或使用filename参数写入文件
to_csv**将 BoxList 对象另存为 CSV 字符串或使用filename参数写入文件
from_jsonClassmethod,从一个 JSON 文件或字符串创建一个 Box 对象(所有 Box 参数都可以传递)
from_yaml类方法,从 YAML 文件或字符串创建一个 Box 对象(所有 Box 参数都可以传递)
from_msgpackClassmethod,从msgpack文件或字节创建一个Box对象(所有Box参数都可以传递)
from_toml*Classmethod,从TOML文件或字符串创建一个Box对象(所有Box参数都可以传递)
from_csv**Classmethod,从一个CSV文件或字符串创建一个BoxList对象(可以传递所有BoxList参数)

* 不适用于 BoxList,仅适用于 Box ** 不适用于 Box,仅适用于 BoxList。

还有更多的特性,大家可以参考 Box 模块官方WIki:

https://github.com/cdgriffith/Box/wiki

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Delorean 优秀的Python时间格式转换工具

DeLorean是一个Python的第三方模块,基于 pytz 和 dateutil 开发的,用于处理Python中日期时间的格式转换。

由于时间转换是一个足够微妙的问题,DeLorean希望为移位、操作和生成日期时间提供一种更干净、更省事的解决方案。比如,实例化字符串形式的时间对象,Delorean只需要 parse 指定字符串,不需要声明其格式就可以进行转换。

至于 Delorean 这个模块名称的由来,Delorean 是电影《回到未来》里的那辆极为炫酷的鸥翼汽车,采用这部电影里的非常具有代表性的汽车的名字作为库名,作者估计也是想表达使用这个库能让你在时空里任意遨游,没有掣肘。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install Delorean

2.Delorean 基础使用

轻松获取当前时间:

from delorean import Delorean

d = Delorean()
print(d)
# Delorean(datetime=datetime.datetime(2021, 10, 6, 9, 5, 57, 611589), timezone='UTC')

将datetime格式的时间转化为Delorean:

import datetime
from delorean import Delorean

d = Delorean()
print(d)
d = Delorean(datetime=datetime.datetime(2018, 5, 10, 8, 52, 23, 560811), timezone='UTC')
# 这里默认的是UTC时间
print(d)
# Delorean(datetime=datetime.datetime(2021, 10, 6, 9, 5, 57, 611589), timezone='UTC')
# Delorean(datetime=datetime.datetime(2018, 5, 10, 8, 52, 23, 560811), timezone='UTC')

转换为国内时区:

import datetime
from delorean import Delorean

d = Delorean(datetime=datetime.datetime(2018, 5, 10, 8, 52, 23, 560811), timezone='UTC')
d = d.shift("Asia/Shanghai")
print(d)
# Delorean(datetime=datetime.datetime(2018, 5, 10, 16, 52, 23, 560811), timezone='Asia/Shanghai')

输出为 datetime、date 也不在话下:

import datetime
from delorean import Delorean

d = Delorean(datetime=datetime.datetime(2018, 5, 10, 8, 52, 23, 560811), timezone='UTC')
d = d.shift("Asia/Shanghai")
print(d.datetime)
print(d.date)
# 2018-05-10 16:52:23.560811+08:00
# 2018-05-10

查看无时区时间及时间戳:

import datetime
from delorean import Delorean

d = Delorean(datetime=datetime.datetime(2018, 5, 10, 8, 52, 23, 560811), timezone='UTC')
d = d.shift("Asia/Shanghai")
print(d.epoch)
print(d.naive)
# 1525942343.560811
# 2018-05-10 08:52:23.560811

用unix时间戳初始化Delorean:

from delorean import epoch
d = epoch(1357971038.102223).shift("Asia/Shanghai")
print(d)
# Delorean(datetime=datetime.datetime(2013, 1, 12, 14, 10, 38, 102223), timezone='Asia/Shanghai')

Delorean支持timedelta的时间加减法。Delorean可以使用timedelta进行加减,得到一个Delorean对象:

import datetime
from delorean import Delorean

d = Delorean(datetime=datetime.datetime(2018, 5, 10, 8, 52, 23, 560811), timezone='UTC')
d = d.shift("Asia/Shanghai")
print(d)
d2 = d + datetime.timedelta(hours=2)
print(d2)
d3 = d - datetime.timedelta(hours=3)
print(d3)
# Delorean(datetime=datetime.datetime(2018, 5, 10, 16, 52, 23, 560811), timezone='Asia/Shanghai')
# Delorean(datetime=datetime.datetime(2018, 5, 10, 18, 52, 23, 560811), timezone='Asia/Shanghai')
# Delorean(datetime=datetime.datetime(2018, 5, 10, 13, 52, 23, 560811), timezone='Asia/Shanghai')

3. Delorean 高级使用

通常情况下我们不关心有多少微妙或者多少秒,因此Delorean提供了非常方便的过滤方式:

from delorean import Delorean

d = Delorean()
print(d)
# Delorean(datetime=datetime.datetime(2019, 3, 14, 4, 0, 50, 597357), timezone='UTC')
d.truncate('second')
# Delorean(datetime=datetime.datetime(2019, 3, 14, 4, 0, 50), timezone='UTC')
d.truncate('hour')
# Delorean(datetime=datetime.datetime(2019, 3, 14, 4, 0), timezone='UTC')
d.truncate('month')
# Delorean(datetime=datetime.datetime(2019, 3, 1, 0, 0), timezone='UTC')
d.truncate('year')
# Delorean(datetime=datetime.datetime(2019, 1, 1, 0, 0), timezone='UTC')

另外,datetime格式的字符串处理的时候转换需要标明各种各样的格式,在Delorean你直接parse就可以了:

from delorean import parse
parse("2011/01/01 00:00:00 -0700")
# Delorean(datetime=datetime.datetime(2011, 1, 1, 0, 0), timezone=pytz.FixedOffset(-420))
parse("2018-05-06")
# Delorean(datetime=datetime.datetime(2018, 6, 5, 0, 0), timezone='UTC')

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

这个神奇的工具,能自动将.py转换为.exe

Auto-py-to-exe 能够基于简单的GUI图形界面和Python中的 PyInstaller,将.py转换为.exe,非常容易使用,适合那些需要在windows上直接执行py文件但又没有Python运行环境的情景。

1. 安装和使用

通过 PyPI 安装

你可以使用PyPI安装此项目:

pip install auto-py-to-exe

然后运行它,在终端中执行以下命令:

auto-py-to-exe

通过 GitHub 安装

git clone https://github.com/brentvollebregt/auto-py-to-exe.git
cd auto-py-to-exe
python setup.py install

然后运行它,在终端中执行以下命令:

auto-py-to-exe

在本地通过 Github 运行(无需安装)

你可以通过以下步骤在本地运行此项目:

1. 克隆/下载 https://github.com/brentvollebregt/auto-py-to-exe

2. 打开 cmd 或终端并 cd 到该项目

3. 执行以下命令

python -m pip install -r requirements.txt

现在运行应用程序,执行:

python -m auto_py_to_exe

将在应用程序模式下打开一个Chrome窗口,并在其中运行本项目。

2. 使用本程序

1.选择您的脚本文件的位置(粘贴或使用文件浏览器),文件存在时轮廓将变为蓝色:

2. 选择其他选项并添加图标或附加文件之类的内容

3. 点击底部的蓝色大按钮进行转换

完成后当前终端所处目录的 output 文件夹中找到转换后的文件:

非常简单,大家有需要可以试试看。

参数使用

如果你不想使用可视化的GUI,也可以通过参数创建:

auto-py-to-exe [-nc] [-c [CONFIG]] [-o [PATH]] [filename]
参数类型描述
filenamepositional在用户界面中预先填写“脚本位置”字段。
-nc, –no-chromeoptional使用默认浏览器打开用户界面。 不会尝试寻找Chrome。
-nu, –no-uioptional不要试图在浏览器中打开界面。
-c [CONFIG], –config [CONFIG]optional提供配置文件(json)以预填充UI。 这些可以在设置选项卡中生成。
-o [PATH], –output-dir [PATH]optional设置默认输出目录。

当然,我建议还是使用GUI的方式,用起来比命令行的形式方便许多。不过你如果需要批量创建exe,那么确实参数形式更适合你。

导出导入配置

“设置”里有“配置导入和导出”部分,它可以将配置作为JSON字符串导出到剪贴板或文件,从而导出UI的当前状态。然后可以使用该JSON再次将配置导入到UI中,以重新填充所有字段。

3. 使用上出现问题

1.输出可执行文件很大

有时 pyinstaller 会自动添加它在你的环境中看到的包,即使你没有在被打包的项目中使用它们。这可能导致输出可执行文件的大小为数十到数百兆字节。

为了解决这个问题,最简单的方法是:

  1. 创建一个新的/干净的虚拟环境
  2. 将 auto-py-to-exe 安装到其中
  3. 为你的项目安装所需的模块
  4. 在这个虚拟环境中使用 auto-py-to-exe 来打包你的脚本

这样做意味着 pyinstaller 看不到你不需要捆绑的软件包,文件会被尽可能减小。

2.命令“python setup.py egg_info”失败,错误代码为 1

安装最新版 setuptools:

pip install --upgrade setuptools.

3.PermissionError: [Errno 13] 权限被拒绝: …

发生这种情况是因为你试图修改无权访问的目录中的文件。解决此问题的一种方法是通过以管理员身份打开 cmd 来运行具有管理员权限的脚本,然后 cd 到你希望输出的脚本的所在目录运行 auto-py-to-exe

更多的问题,可以在这篇文章中尝试查找解决方案:https://nitratine.net/blog/post/issues-when-using-auto-py-to-exe/

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!


​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典