Machine-learning-course-使用Python语言的💬机器学习课程:

Introduction

本项目的目的是提供一门使用Python进行机器学习的全面而又简单的课程

Motivation

Machine Learning,作为一种工具Artificial Intelligence,是采用最广泛的科学领域之一。已经发表了大量关于机器学习的文献。本项目的目的是提供以下最重要的方面Machine Learning通过介绍一系列简单而全面的教程,您可以使用Python在这个项目中,我们使用了许多不同的众所周知的机器学习框架来构建我们的教程,例如Scikit-learn在本项目中,您将了解到:

  • 机器学习的定义是什么?
  • 它是什么时候开始的,趋势是什么?
  • 什么是机器学习类别和子类别?
  • 最常用的机器学习算法是什么?如何实现它们?

Machine Learning

标题 文档
机器学习导论 Overview

Machine Learning Basics

标题 代码 文档
线性回归 Python Tutorial
适配过高/适配不足 Python Tutorial
正则化 Python Tutorial
交叉验证 Python Tutorial

Supervised learning

标题 代码 文档
决策树 Python Tutorial
K-近邻 Python Tutorial
朴素贝叶斯 Python Tutorial
Logistic回归 Python Tutorial
支持向量机 Python Tutorial

Unsupervised learning

标题 代码 文档
群集 Python Tutorial
主成分分析 Python Tutorial

Deep Learning

标题 代码 文档
神经网络概述 Python Tutorial
卷积神经网络 Python Tutorial
自动编码器 Python Tutorial
递归神经网络 Python IPython

Pull Request Process

请考虑以下标准,以便更好地帮助我们:

  1. 拉取请求主要预期为链接建议
  2. 请确保您建议的资源没有过时或损坏
  3. 在执行构建和创建拉入请求时,请确保在图层结束之前移除所有安装或构建依赖项
  4. 添加带有接口更改详细信息的注释,包括新的环境变量、暴露的端口、有用的文件位置和容器参数
  5. 一旦您获得至少一个其他开发人员的签字,您就可以合并拉取请求,或者如果您没有权限这样做,如果您相信所有检查都已通过,您可以请求所有者为您合并该请求

Final Note

我们期待着您的善意反馈。请帮助我们改进这个开源项目,让我们的工作做得更好。对于捐款,请创建拉取请求,我们会立即进行调查。再次感谢您的反馈和支持

Developers

创建者:机器学习思维模式[BlogGitHubTwitter]

主管:Amirsina Torfi[GitHubPersonal WebsiteLinkedin]

开发商:Brendan Sherman*,James E Hopkins*[Linkedin],扎克·史密斯[Linkedin]

注意事项:本项目已被开发为顶峰项目,由[CS 4624 Multimedia/ Hypertext course at Virginia Tech],并由[Machine Learning Mindset]

*:平均分担

Citation

如果您觉得本课程有用,请考虑引用如下内容:

@software{amirsina_torfi_2019_3585763,
  author       = {Amirsina Torfi and
                  Brendan Sherman and
                  Jay Hopkins and
                  Eric Wynn and
                  hokie45 and
                  Frederik De Bleser and
                  李明岳 and
                  Samuel Husso and
                  Alain},
  title        = {{machinelearningmindset/machine-learning-course:
                   Machine Learning with Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {1.0},
  doi          = {10.5281/zenodo.3585763},
  url          = {https://doi.org/10.5281/zenodo.3585763}
}