问题:如何将PIL图像转换为numpy数组?
好吧,我想将PIL图像对象来回转换为numpy数组,因此我可以比PIL PixelAccess
对象所允许的更快地进行逐像素转换。我已经找到了如何通过以下方式将像素信息放置在有用的3D numpy数组中:
pic = Image.open("foo.jpg")
pix = numpy.array(pic.getdata()).reshape(pic.size[0], pic.size[1], 3)
但是,在完成所有出色的转换之后,我似乎无法弄清楚如何将其重新加载到PIL对象中。我知道该putdata()
方法,但似乎无法使其正常工作。
Alright, I’m toying around with converting a PIL image object back and forth to a numpy array so I can do some faster pixel by pixel transformations than PIL’s PixelAccess
object would allow. I’ve figured out how to place the pixel information in a useful 3D numpy array by way of:
pic = Image.open("foo.jpg")
pix = numpy.array(pic.getdata()).reshape(pic.size[0], pic.size[1], 3)
But I can’t seem to figure out how to load it back into the PIL object after I’ve done all my awesome transforms. I’m aware of the putdata()
method, but can’t quite seem to get it to behave.
回答 0
您并不是在说putdata()
行为方式到底有多精确。我假设你在做
>>> pic.putdata(a)
Traceback (most recent call last):
File "...blablabla.../PIL/Image.py", line 1185, in putdata
self.im.putdata(data, scale, offset)
SystemError: new style getargs format but argument is not a tuple
这是因为putdata
需要一个元组序列,并且您要给它一个numpy数组。这个
>>> data = list(tuple(pixel) for pixel in pix)
>>> pic.putdata(data)
可以工作,但是非常慢。
从PIL 1.1.6开始,在图像和numpy数组之间进行转换的“正确”方法很简单
>>> pix = numpy.array(pic)
尽管结果数组的格式与您的格式不同(在这种情况下为3维数组或行/列/ rgb)。
然后,在对阵列进行更改之后,您应该可以执行任一操作pic.putdata(pix)
或使用创建新图像Image.fromarray(pix)
。
You’re not saying how exactly putdata()
is not behaving. I’m assuming you’re doing
>>> pic.putdata(a)
Traceback (most recent call last):
File "...blablabla.../PIL/Image.py", line 1185, in putdata
self.im.putdata(data, scale, offset)
SystemError: new style getargs format but argument is not a tuple
This is because putdata
expects a sequence of tuples and you’re giving it a numpy array. This
>>> data = list(tuple(pixel) for pixel in pix)
>>> pic.putdata(data)
will work but it is very slow.
As of PIL 1.1.6, the “proper” way to convert between images and numpy arrays is simply
>>> pix = numpy.array(pic)
although the resulting array is in a different format than yours (3-d array or rows/columns/rgb in this case).
Then, after you make your changes to the array, you should be able to do either pic.putdata(pix)
or create a new image with Image.fromarray(pix)
.
回答 1
I
以数组形式打开:
>>> I = numpy.asarray(PIL.Image.open('test.jpg'))
对进行一些处理I
,然后将其转换回图像:
>>> im = PIL.Image.fromarray(numpy.uint8(I))
使用FFT,Python过滤numpy图像
如果出于某种原因要明确地执行此操作,则此页面上的correlation.zip中有使用getdata()的pil2array()和array2pil()函数。
Open I
as an array:
>>> I = numpy.asarray(PIL.Image.open('test.jpg'))
Do some stuff to I
, then, convert it back to an image:
>>> im = PIL.Image.fromarray(numpy.uint8(I))
Filter numpy images with FFT, Python
If you want to do it explicitly for some reason, there are pil2array() and array2pil() functions using getdata() on this page in correlation.zip.
回答 2
我在Python 3.5中使用Pillow 4.1.1(PIL的后继产品)。枕头和numpy之间的转换非常简单。
from PIL import Image
import numpy as np
im = Image.open('1.jpg')
im2arr = np.array(im) # im2arr.shape: height x width x channel
arr2im = Image.fromarray(im2arr)
需要注意的一件事是,枕头样式im
是专栏为主的,而numpy 样式是专栏的im2arr
。但是,该功能Image.fromarray
已经考虑了这一点。即,arr2im.size == im.size
和arr2im.mode == im.mode
在上面的例子。
在处理转换后的numpy数组时,例如在进行转换im2arr = np.rollaxis(im2arr, 2, 0)
或im2arr = np.transpose(im2arr, (2, 0, 1))
转换为CxHxW格式时,我们应注意HxWxC数据格式。
I am using Pillow 4.1.1 (the successor of PIL) in Python 3.5. The conversion between Pillow and numpy is straightforward.
from PIL import Image
import numpy as np
im = Image.open('1.jpg')
im2arr = np.array(im) # im2arr.shape: height x width x channel
arr2im = Image.fromarray(im2arr)
One thing that needs noticing is that Pillow-style im
is column-major while numpy-style im2arr
is row-major. However, the function Image.fromarray
already takes this into consideration. That is, arr2im.size == im.size
and arr2im.mode == im.mode
in the above example.
We should take care of the HxWxC data format when processing the transformed numpy arrays, e.g. do the transform im2arr = np.rollaxis(im2arr, 2, 0)
or im2arr = np.transpose(im2arr, (2, 0, 1))
into CxHxW format.
回答 3
您需要通过以下方式将图像转换为numpy数组:
import numpy
import PIL
img = PIL.Image.open("foo.jpg").convert("L")
imgarr = numpy.array(img)
You need to convert your image to a numpy array this way:
import numpy
import PIL
img = PIL.Image.open("foo.jpg").convert("L")
imgarr = numpy.array(img)
回答 4
我今天使用的示例:
import PIL
import numpy
from PIL import Image
def resize_image(numpy_array_image, new_height):
# convert nympy array image to PIL.Image
image = Image.fromarray(numpy.uint8(numpy_array_image))
old_width = float(image.size[0])
old_height = float(image.size[1])
ratio = float( new_height / old_height)
new_width = int(old_width * ratio)
image = image.resize((new_width, new_height), PIL.Image.ANTIALIAS)
# convert PIL.Image into nympy array back again
return array(image)
The example, I have used today:
import PIL
import numpy
from PIL import Image
def resize_image(numpy_array_image, new_height):
# convert nympy array image to PIL.Image
image = Image.fromarray(numpy.uint8(numpy_array_image))
old_width = float(image.size[0])
old_height = float(image.size[1])
ratio = float( new_height / old_height)
new_width = int(old_width * ratio)
image = image.resize((new_width, new_height), PIL.Image.ANTIALIAS)
# convert PIL.Image into nympy array back again
return array(image)
回答 5
如果图像以Blob格式(即数据库)存储,则可以使用Billal Begueradj解释的相同技术将图像从Blob转换为字节数组。
就我而言,我需要将图像存储在db表的blob列中:
def select_all_X_values(conn):
cur = conn.cursor()
cur.execute("SELECT ImageData from PiecesTable")
rows = cur.fetchall()
return rows
然后,我创建了一个辅助函数,将我的数据集更改为np.array:
X_dataset = select_all_X_values(conn)
imagesList = convertToByteIO(np.array(X_dataset))
def convertToByteIO(imagesArray):
"""
# Converts an array of images into an array of Bytes
"""
imagesList = []
for i in range(len(imagesArray)):
img = Image.open(BytesIO(imagesArray[i])).convert("RGB")
imagesList.insert(i, np.array(img))
return imagesList
之后,我可以在神经网络中使用byteArrays了。
plt.imshow(imagesList[0])
If your image is stored in a Blob format (i.e. in a database) you can use the same technique explained by Billal Begueradj to convert your image from Blobs to a byte array.
In my case, I needed my images where stored in a blob column in a db table:
def select_all_X_values(conn):
cur = conn.cursor()
cur.execute("SELECT ImageData from PiecesTable")
rows = cur.fetchall()
return rows
I then created a helper function to change my dataset into np.array:
X_dataset = select_all_X_values(conn)
imagesList = convertToByteIO(np.array(X_dataset))
def convertToByteIO(imagesArray):
"""
# Converts an array of images into an array of Bytes
"""
imagesList = []
for i in range(len(imagesArray)):
img = Image.open(BytesIO(imagesArray[i])).convert("RGB")
imagesList.insert(i, np.array(img))
return imagesList
After this, I was able to use the byteArrays in my Neural Network.
plt.imshow(imagesList[0])
回答 6
转换Numpy to PIL
图像并PIL to Numpy
import numpy as np
from PIL import Image
def pilToNumpy(img):
return np.array(img)
def NumpyToPil(img):
return Image.fromarray(img)
Convert Numpy to PIL
image and PIL to Numpy
import numpy as np
from PIL import Image
def pilToNumpy(img):
return np.array(img)
def NumpyToPil(img):
return Image.fromarray(img)
回答 7
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
您可以通过在压缩特征后将图像解析为numpy()函数来将图像转换为numpy(非规范化)
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
You can transform the image into numpy
by parsing the image into numpy() function after squishing out the features( unnormalization)