标签归档:python-imaging-library

如何使用PIL裁剪图像?

问题:如何使用PIL裁剪图像?

我想通过从给定图像中删除前30行和后30行来裁剪图像。我已经搜索过,但没有得到确切的解决方案。有人有建议吗?

I want to crop image in the way by removing first 30 rows and last 30 rows from the given image. I have searched but did not get the exact solution. Does somebody have some suggestions?


回答 0

有一种crop()方法:

w, h = yourImage.size
yourImage.crop((0, 30, w, h-30)).save(...)

There is a crop() method:

w, h = yourImage.size
yourImage.crop((0, 30, w, h-30)).save(...)

回答 1

您需要为此导入PIL(枕头)。假设您的图像尺寸为1200、1600。我们会将图像从400、400裁剪为800、800

from PIL import Image
img = Image.open("ImageName.jpg")
area = (400, 400, 800, 800)
cropped_img = img.crop(area)
cropped_img.show()

You need to import PIL (Pillow) for this. Suppose you have an image of size 1200, 1600. We will crop image from 400, 400 to 800, 800

from PIL import Image
img = Image.open("ImageName.jpg")
area = (400, 400, 800, 800)
cropped_img = img.crop(area)
cropped_img.show()

回答 2

(左,上,右,下)表示两个点,

  1. (左上)
  2. (右下)

对于800×600像素的图像,图像的左上点是(0,0),右下点是(800,600)。

因此,为了将图像减半:

from PIL import Image
img = Image.open("ImageName.jpg")

img_left_area = (0, 0, 400, 600)
img_right_area = (400, 0, 800, 600)

img_left = img.crop(img_left_area)
img_right = img.crop(img_right_area)

img_left.show()
img_right.show()

坐标系

Python Imaging Library使用笛卡尔像素坐标系,左上角为(0,0)。注意,坐标指的是隐含的像素角。寻址为(0,0)的像素的中心实际上位于(0.5,0.5)。

坐标通常以2元组(x,y)的形式传递给库。矩形用4元组表示,左上角在前。例如,将覆盖所有800×600像素图像的矩形写为(0,0,800,600)。

(left, upper, right, lower) means two points,

  1. (left, upper)
  2. (right, lower)

with an 800×600 pixel image, the image’s left upper point is (0, 0), the right lower point is (800, 600).

So, for cutting the image half:

from PIL import Image
img = Image.open("ImageName.jpg")

img_left_area = (0, 0, 400, 600)
img_right_area = (400, 0, 800, 600)

img_left = img.crop(img_left_area)
img_right = img.crop(img_right_area)

img_left.show()
img_right.show()

Coordinate System

The Python Imaging Library uses a Cartesian pixel coordinate system, with (0,0) in the upper left corner. Note that the coordinates refer to the implied pixel corners; the centre of a pixel addressed as (0, 0) actually lies at (0.5, 0.5).

Coordinates are usually passed to the library as 2-tuples (x, y). Rectangles are represented as 4-tuples, with the upper left corner given first. For example, a rectangle covering all of an 800×600 pixel image is written as (0, 0, 800, 600).


回答 3

一种更简单的方法是使用ImageOps中的作物。您可以从每一侧输入要裁剪的像素数。

from PIL import ImageOps

border = (0, 30, 0, 30) # left, up, right, bottom
ImageOps.crop(img, border)

An easier way to do this is using crop from ImageOps. You can feed the number of pixels you want to crop from each side.

from PIL import ImageOps

border = (0, 30, 0, 30) # left, up, right, bottom
ImageOps.crop(img, border)

Mac OS X 10.9之后无法安装PIL

问题:Mac OS X 10.9之后无法安装PIL

我刚刚将Mac OS更新为10.9,发现其中的某些(全部?)Python模块不再可用,尤其是Image模块。

所以我尝试执行sudo pip install pil,但是出现此错误:

/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/usr/include/tk.h:78:11: fatal error: 'X11/Xlib.h' file not found

#      include <X11/Xlib.h>

               ^

1 error generated.

error: command 'cc' failed with exit status 1

我的Xcode是最新的,我不知道。PIL可能还不兼容10.9吗?

I’ve just updated my Mac OS to 10.9 and I discovered that some (all?) of my Python modules are not here anymore, especially the Image one.

So I try to execute sudo pip install pil, but I get this error:

/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/usr/include/tk.h:78:11: fatal error: 'X11/Xlib.h' file not found

#      include <X11/Xlib.h>

               ^

1 error generated.

error: command 'cc' failed with exit status 1

My Xcode is up-to-date and I don’t have any idea. Is it possible that PIL is not yet 10.9 compatible ?


回答 0

以下为我工作:

ln -s  /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11 /usr/local/include/X11
sudo pip install pil

更新:

但是,威尔提供了以下更正确的解决方案。

打开终端并执行: xcode-select --install

Following worked for me:

ln -s  /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11 /usr/local/include/X11
sudo pip install pil

UPDATE:

But there is more correct solution below, provided by Will.

open your terminal and execute: xcode-select --install


回答 1

打开终端并执行:

xcode-select --install

open your terminal and execute:

xcode-select --install


回答 2

sudo ln -s /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.8.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11/ /usr/local/include/X11

对我有帮助!操作系统x 10.9

pip install pillow

但!点安装后…

*** ZLIB (PNG/ZIP) support not available

最后我通过运行来修复它:

xcode-select --install

然后重新安装枕头

pip install pillow

PIL SETUP SUMMARY
    --------------------------------------------------------------------
    version      Pillow 2.2.1
    platform     darwin 2.7.5 (default, Aug 25 2013, 00:04:04)
                 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)]
    --------------------------------------------------------------------
    --- TKINTER support available
    --- JPEG support available
    --- ZLIB (PNG/ZIP) support available
    --- TIFF G3/G4 (experimental) support available
    --- FREETYPE2 support available
    --- LITTLECMS support available
    --- WEBP support available
    --- WEBPMUX support available
    --------------------------------------------------------------------
sudo ln -s /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.8.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11/ /usr/local/include/X11

helps for me! os x 10.9

pip install pillow

but! after pip install …

*** ZLIB (PNG/ZIP) support not available

and finally i fix it by running:

xcode-select --install

then reinstall pillow

pip install pillow

PIL SETUP SUMMARY
    --------------------------------------------------------------------
    version      Pillow 2.2.1
    platform     darwin 2.7.5 (default, Aug 25 2013, 00:04:04)
                 [GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)]
    --------------------------------------------------------------------
    --- TKINTER support available
    --- JPEG support available
    --- ZLIB (PNG/ZIP) support available
    --- TIFF G3/G4 (experimental) support available
    --- FREETYPE2 support available
    --- LITTLECMS support available
    --- WEBP support available
    --- WEBPMUX support available
    --------------------------------------------------------------------

回答 3

适用于我(OS X Yosemite 10.10.2-Python 2.7.9):

xcode-select --install
sudo pip install pillow

尝试检查一下:

from PIL import Image
image = Image.open("file.jpg")
image.show()

Works for me ( OS X Yosemite 10.10.2 – Python 2.7.9 ) :

xcode-select --install
sudo pip install pillow

Try this to check it:

from PIL import Image
image = Image.open("file.jpg")
image.show()

回答 4

这是我所做的,某些步骤可能仅对于PIL并不是必需的,但无论如何我都需要libpng和其他步骤:

1)运行xcode install,使用此命令或从应用商店下载更新:

xcode-select --install

1b)添加命令行工具可选工具,在Mountain Lion中,这是xcode下载页面上的一个选项,但是现在您必须注册您的Apple ID并从以下位置下载: https //developer.apple.com/downloads/

寻找Xcode的命令行工具(OS X Mavericks)

2)安装python所需的一切(使用brew),我相信您也可以使用port:

brew install readline sqlite gdbm
brew install python --universal --framework 
brew install libpng jpeg freetype

必要时取消链接/重新链接,即升级。

3)安装Pip和所需的模块:

easy_install pip 
sudo pip install setuptools --no-use-wheel --upgrade

4)最后,这没有错误:

sudo pip install Pillow

2014年11月4日更新:PIL存储区不再收到更新或支持,因此应使用Pillow。现在不建议使用以下内容,因此请坚持使用Pillow。

sudo pip install pil --allow-external pil --allow-unverified pil

UPDATE(旧):安装Pillow(PIL拨叉)时同样适用,并且在大多数情况下,它很快就可以替代PILlow。而不是在步骤4中安装pip,而是运行以下命令:

sudo pip install Pillow

希望这对某人有帮助!

Here is what I did, some steps may not be necessary just for PIL but I needed libpng and others anyways:

1) Run xcode install, use this command or download updates from the app store:

xcode-select --install

1b) Add the Command Line Tools optional tool, in Mountain Lion this was an option on the xcode Download page, but now you have to register with your apple id and download from: https://developer.apple.com/downloads/

Look for Command Line Tools (OS X Mavericks) for Xcode

2) Install everything needed for python (using brew), I believe you can use port as well:

brew install readline sqlite gdbm
brew install python --universal --framework 
brew install libpng jpeg freetype

Unlink/ relink if needed i.e. if upgrading.

3) Install Pip and required modules:

easy_install pip 
sudo pip install setuptools --no-use-wheel --upgrade

4) Finally this works with no errors:

sudo pip install Pillow

UPDATE 11/04/14: PIL repo no longer receives updates or support so Pillow should be used. The below is now deprecated so stick with Pillow.

sudo pip install pil --allow-external pil --allow-unverified pil

UPDATE (OLD) : The same thing applies when installing Pillow (PIL fork) and should be mentioned as its quickly becoming a replacement in most cases of PIL. Instead of installing pip in step 4, run this instead:

sudo pip install Pillow

Hope this helps someone!


回答 5

安装命令行工具为我解决了这个问题

您必须分别安装它们,因为它们现在不属于xcode软件包中的一部分:

https://developer.apple.com/downloads/index.action?=command%20line%20tools#

installing command line tools fixed the issue for me

you have to install them separately as they are not part of the packages in xcode now:

https://developer.apple.com/downloads/index.action?=command%20line%20tools#


回答 6

这些都不对我有用。我一直收到:

clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future]
clang: note: this will be a hard error (cannot be downgraded to a warning) in the future
error: command 'cc' failed with exit status 1

因此,我找到了以下解决方案:

sudo export CFLAGS=-Qunused-arguments
sudo export CPPFLAGS=-Qunused-arguments
sudo pip install PIL --allow-external PIL --allow-unverified PIL

这样我就可以安装。

Non of those worked for me.. I kept receiving:

clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future]
clang: note: this will be a hard error (cannot be downgraded to a warning) in the future
error: command 'cc' failed with exit status 1

So I found a work around with the following solution:

sudo export CFLAGS=-Qunused-arguments
sudo export CPPFLAGS=-Qunused-arguments
sudo pip install PIL --allow-external PIL --allow-unverified PIL

This way I was able to install.


回答 7

我有一个类似的问题:安装枕头失败clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future],安装枕头失败Can't install the software because it is not currently available from the Software Update server.,并且,即使手动安装了命令行工具,PIL的编译也失败了。

发生这种情况是因为最新版本的xcode下的clang不会警告未知的编译器标志,而是通过硬错误停止编译。

要解决此问题,只需export ARCHFLAGS="-Wno-error=unused-command-line-argument-hard-error-in-future"在终端上运行,然后再尝试进行编译(安装pil)。

I had a similar problem: Installing pillow failed with clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future], installing command line tools failed with Can't install the software because it is not currently available from the Software Update server., and even after installing the command line tools manually, the compilation of PIL failed.

This happens cause clang under the newest version of xcode doesn’t warn on unknown compiler flags, but rather stop the compilation with a hard error.

To fix this, just run export ARCHFLAGS="-Wno-error=unused-command-line-argument-hard-error-in-future" on the terminal before trying to compile (installing pil).


回答 8

只需运行

pip install pil --allow-external pil --allow-unverified pil

Simply run

pip install pil --allow-external pil --allow-unverified pil


回答 9

这是我在Mac OS 10.9.1上的步骤

1. sudo su
2. easy_install pip
3. xcode-select --install
4. pip install --no-index -f http://dist.plone.org/thirdparty/ -U PIL

This my steps on mac os 10.9.1

1. sudo su
2. easy_install pip
3. xcode-select --install
4. pip install --no-index -f http://dist.plone.org/thirdparty/ -U PIL

回答 10

您可以使用Homebrew进行安装 http://brew.sh

brew tap Homebrew/python
brew install pillow

You could use Homebrew to do the install http://brew.sh

brew tap Homebrew/python
brew install pillow

回答 11

确保在xcode上安装了命令行工具。然后执行:

sudo pip install pil --allow-external pil --allow-unverified pil

Make sure you have Command Line Tools installed on your xcode. Then execute:

sudo pip install pil --allow-external pil --allow-unverified pil

回答 12

我遇到以下错误

building 'PIL._imagingft' extension
_imagingft.c:62:10: fatal error: 'freetype/fterrors.h' file not found

#include <freetype/fterrors.h>

         ^

1 error generated.

error: command 'cc' failed with exit status 1

解决方案是将freetype2符号链接到freetype,从而解决了该问题。

I was having the following error

building 'PIL._imagingft' extension
_imagingft.c:62:10: fatal error: 'freetype/fterrors.h' file not found

#include <freetype/fterrors.h>

         ^

1 error generated.

error: command 'cc' failed with exit status 1

The solution to this was to symlink freetype2 to freetype and this solved the problem.


回答 13

我不想安装XCode(我不使用它),但我讨厌摆弄Application目录。我从这篇文章的许多答案中脱颖而出,以下两个步骤对我来说适用于10.9.5:

sudo easy_install pip
sudo pip install pillow

我不得不使用easy_install来安装pip确实让我感到奇怪。但是pip不想在重新安装之前为我工作。

I didn’t want to install XCode (I don’t use it) and I’m loath to fiddle with Application directory. I’ve cribbed from the many answers in this post and the following two steps work for me with 10.9.5:

sudo easy_install pip
sudo pip install pillow

It did appear to me strange that I had to use easy_install to install pip. But pip didn’t want to work for me before that (re-)install.


回答 14

找到了解决方案…您必须像这样对X11进行符号链接ln -s /opt/X11/include/X11 /usr/local/include/X11,然后sudo pip install pil才能正常工作。

Found the solution … You’ve to symlink X11 like this ln -s /opt/X11/include/X11 /usr/local/include/X11 and then sudo pip install pil should work.


回答 15

重用@DmitryDemidenko的答案对我有用:

ln -s  /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11 /usr/local/include/X11

然后

sudo pip install -U PIL --allow-external PIL --allow-unverified PIL

Reusing @DmitryDemidenko’s answer that is how it worked for me:

ln -s  /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11 /usr/local/include/X11

and then

sudo pip install -U PIL --allow-external PIL --allow-unverified PIL

回答 16

执行下面的命令行。在Mac OS 10.9.5上像超级按钮一样工作

easy_install点

sudo pip install setuptools –no-use-wheel –upgrade

sudo pip安装枕头

最好的,西奥

Execute the bellow command lines. Works like a charm on Mac OS 10.9.5

easy_install pip

sudo pip install setuptools –no-use-wheel –upgrade

sudo pip install Pillow

Best, Theo


回答 17

那就是我所做的:

首先升级到Xcode 5(我正在运行10.9)。然后,在终端中执行以下命令:

$ /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk
$ ln -s /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11 usr/include/

That’s what I did:

First upgrade to Xcode 5 (I am running 10.9). Then, execute the following commands in a terminal:

$ /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk
$ ln -s /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Tk.framework/Versions/8.5/Headers/X11 usr/include/

回答 18

一个更完整的解决方案需要安装Xquartz X11子系统,该子系统已经在Apple之外构建了几年。这是我用来使其全部工作的步骤

  1. http://xquartz.macosforge.org/landing/安装XQuartz
  2. sudo pip install pillow

A more complete solution requires the installation of the Xquartz X11 subsystem that has been built outside of Apple for several years now. Here are the steps I used to get it all working

  1. Install XQuartz from http://xquartz.macosforge.org/landing/
  2. Run sudo pip install pillow

回答 19

因为公认的答案是正确的答案,xcode-select --install但有些人(包括我)可能会遇到Can't install the software because it is not currently available from the Software Update server 如果您使用的是Beta版软件(因为我现在使用的是优胜美地并且遇到相同的问题),则您需要单独购买CLT,因为它不包含在其中。 XCode(甚至xcode beta)也可以转到developers.apple.com并为您的OS获取CLT工具;)

PS您不需要XQuartz的PIL或Pillow即可工作

As the accepted answer is the right one with xcode-select --install but some people (including me) may encounter Can't install the software because it is not currently available from the Software Update server If you are using beta software (as I am using Yosemite now and had the same problem) you NEED to get the CLT separately since it is NOT included in XCode (even xcode beta) Head over to developers.apple.com and get CLT tools for your OS ;)

P.S. You don’t need XQuartz for PIL or Pillow to work


回答 20

我最近从OS 10.8-> 10.9升级的机器陷入了xcrun和lipo之间的循环。

将/ usr / bin / lipo重命名为/ usr / bin / lipo_broken

请参阅此线程以获取有关如何解决的更多信息:

使用OS X Mavericks和XCode 4.x冻结xcrun / lipo

My machine which was recently upgraded from OS 10.8 -> 10.9 got stuck in a loop between xcrun and lipo.

Rename /usr/bin/lipo to /usr/bin/lipo_broken

Refer to this thread for further information on how to resolve:

xcrun/lipo freezes with OS X Mavericks and XCode 4.x


回答 21

改为安装枕头

sudo pip install pillow

Install Pillow instead:

sudo pip install pillow

回答 22

ln -s /usr/local/include/freetype2 /usr/local/include/freetype
sudo ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future pip install pil
ln -s /usr/local/include/freetype2 /usr/local/include/freetype
sudo ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future pip install pil

回答 23

试试这个:

ln -s /usr/local/include/freetype2 /usr/local/include/freetype

Try this:

ln -s /usr/local/include/freetype2 /usr/local/include/freetype

回答 24

sudo pip uninstall pillow
pip install pillow

为我工作。我在优胜美地上运行Python 2.7.9。import PIL现在为我工作。

sudo pip uninstall pillow
pip install pillow

worked for me. I’m running Python 2.7.9 on Yosemite.import PIL now works for me.


回答 25

在Mac OSC 10.10 Yosemite上安装PIL(Imaging.1.1.7)。我尝试了这里推荐的许多修复程序,但是每个修复程序都遇到了麻烦。我终于通过编辑setup.py文件来解决了这个问题:

TCL_ROOT =“ / opt / X11 / include”

它在_imagingtk.c的编译中通过了X11的适当包含路径,这对我造成了问题。更改后立即工作。

Installing PIL (Imaging.1.1.7) on Mac OSC 10.10 Yosemite. I tried numerous fixes recommended here but ran into trouble with each one. I finally solved this problem by editing the setup.py file such that:

TCL_ROOT = “/opt/X11/include”

which passes the appropriate include path for X11 in the compilation of _imagingtk.c, which was causing the problem for me. Worked immediately after change.


回答 26

我已从pyenv移至virtualenv,这解决了我的问题。

I’ve moved from pyenv to virtualenv and this fixed my problem.


回答 27

  1. ln -s / opt / X11 / include / X11 / usr / local / include / X11
  2. 没有sudo的pip install pil
  1. ln -s /opt/X11/include/X11 /usr/local/include/X11
  2. pip install pil without sudo

如何使用matplotlib颜色图将NumPy数组转换为PIL图像

问题:如何使用matplotlib颜色图将NumPy数组转换为PIL图像

我有一个简单的问题,但找不到很好的解决方案。

我想获取一个代表灰度图像的NumPy 2D数组,并在应用一些matplotlib颜色图时将其转换为RGB PIL图像。

我可以使用以下pyplot.figure.figimage命令获得合理的PNG输出:

dpi = 100.0
w, h = myarray.shape[1]/dpi, myarray.shape[0]/dpi
fig = plt.figure(figsize=(w,h), dpi=dpi)
fig.figimage(sub, cmap=cm.gist_earth)
plt.savefig('out.png')

尽管我可以修改它以获取所需的东西(可能使用StringIO可以获取PIL图像),但我想知道是否没有一种更简单的方法可以这样做,因为这似乎是图像可视化的一个非常自然的问题。假设是这样的:

colored_PIL_image = magic_function(array, cmap)

I have a simple problem, but I cannot find a good solution to it.

I want to take a NumPy 2D array which represents a grayscale image, and convert it to an RGB PIL image while applying some of the matplotlib colormaps.

I can get a reasonable PNG output by using the pyplot.figure.figimage command:

dpi = 100.0
w, h = myarray.shape[1]/dpi, myarray.shape[0]/dpi
fig = plt.figure(figsize=(w,h), dpi=dpi)
fig.figimage(sub, cmap=cm.gist_earth)
plt.savefig('out.png')

Although I could adapt this to get what I want (probably using StringIO do get the PIL image), I wonder if there is not a simpler way to do that, since it seems to be a very natural problem of image visualization. Let’s say, something like this:

colored_PIL_image = magic_function(array, cmap)

回答 0

一行代码很忙,但是这里是:

  1. 首先,请确保您的NumPy数组myarray使用处的最大值进行了规范化1.0
  2. 将颜色表直接应用于myarray
  3. 重新调整0-255范围。
  4. 使用转换为整数np.uint8()
  5. 使用Image.fromarray()

这样就完成了:

from PIL import Image
from matplotlib import cm
im = Image.fromarray(np.uint8(cm.gist_earth(myarray)*255))

plt.savefig()

im.save()

Quite a busy one-liner, but here it is:

  1. First ensure your NumPy array, myarray, is normalised with the max value at 1.0.
  2. Apply the colormap directly to myarray.
  3. Rescale to the 0-255 range.
  4. Convert to integers, using np.uint8().
  5. Use Image.fromarray().

And you’re done:

from PIL import Image
from matplotlib import cm
im = Image.fromarray(np.uint8(cm.gist_earth(myarray)*255))

with plt.savefig():

with im.save():


回答 1

  • 输入= numpy_image
  • np.unit8->转换为整数
  • convert(’RGB’)->转换为RGB
  • Image.fromarray->返回图像对象

    from PIL import Image
    import numpy as np
    
    PIL_image = Image.fromarray(np.uint8(numpy_image)).convert('RGB')
    
    PIL_image = Image.fromarray(numpy_image.astype('uint8'), 'RGB')
  • input = numpy_image
  • np.unit8 -> converts to integers
  • convert(‘RGB’) -> converts to RGB
  • Image.fromarray -> returns an image object

    from PIL import Image
    import numpy as np
    
    PIL_image = Image.fromarray(np.uint8(numpy_image)).convert('RGB')
    
    PIL_image = Image.fromarray(numpy_image.astype('uint8'), 'RGB')
    

回答 2

即使应用了注释中提到的更改,接受的答案中描述的方法对我也不起作用。但是下面的简单代码有效:

import matplotlib.pyplot as plt
plt.imsave(filename, np_array, cmap='Greys')

np_array可以是2D数组,其值从0..1浮点型到o2 0..255 uint8,在这种情况下,它需要cmap。对于3D阵列,cmap将被忽略。

The method described in the accepted answer didn’t work for me even after applying changes mentioned in its comments. But the below simple code worked:

import matplotlib.pyplot as plt
plt.imsave(filename, np_array, cmap='Greys')

np_array could be either a 2D array with values from 0..1 floats o2 0..255 uint8, and in that case it needs cmap. For 3D arrays, cmap will be ignored.


在Python中,如何读取图像的exif数据?

问题:在Python中,如何读取图像的exif数据?

我正在使用PIL。如何将EXIF数据转换为字典?

I’m using PIL. How do I turn the EXIF data of a picture into a dictionary?


回答 0

试试这个:

import PIL.Image
img = PIL.Image.open('img.jpg')
exif_data = img._getexif()

这应该给您一个由EXIF数字标签索引的字典。如果您希望字典由实际的EXIF标记名称字符串索引,请尝试以下操作:

import PIL.ExifTags
exif = {
    PIL.ExifTags.TAGS[k]: v
    for k, v in img._getexif().items()
    if k in PIL.ExifTags.TAGS
}

You can use the _getexif() protected method of a PIL Image.

import PIL.Image
img = PIL.Image.open('img.jpg')
exif_data = img._getexif()

This should give you a dictionary indexed by EXIF numeric tags. If you want the dictionary indexed by the actual EXIF tag name strings, try something like:

import PIL.ExifTags
exif = {
    PIL.ExifTags.TAGS[k]: v
    for k, v in img._getexif().items()
    if k in PIL.ExifTags.TAGS
}

回答 1

您还可以使用ExifRead模块:

import exifread
# Open image file for reading (binary mode)
f = open(path_name, 'rb')

# Return Exif tags
tags = exifread.process_file(f)

You can also use the ExifRead module:

import exifread
# Open image file for reading (binary mode)
f = open(path_name, 'rb')

# Return Exif tags
tags = exifread.process_file(f)

回答 2

我用这个:

import os,sys
from PIL import Image
from PIL.ExifTags import TAGS

for (k,v) in Image.open(sys.argv[1])._getexif().iteritems():
        print '%s = %s' % (TAGS.get(k), v)

或获取特定字段:

def get_field (exif,field) :
  for (k,v) in exif.iteritems():
     if TAGS.get(k) == field:
        return v

exif = image._getexif()
print get_field(exif,'ExposureTime')

I use this:

import os,sys
from PIL import Image
from PIL.ExifTags import TAGS

for (k,v) in Image.open(sys.argv[1])._getexif().items():
        print('%s = %s' % (TAGS.get(k), v))

or to get a specific field:

def get_field (exif,field) :
  for (k,v) in exif.items():
     if TAGS.get(k) == field:
        return v

exif = image._getexif()
print get_field(exif,'ExposureTime')

回答 3

对于Python3.x和starting Pillow==6.0.0Image对象现在提供了getexif()一种返回的方法,<class 'PIL.Image.Exif'>或者None该图像没有EXIF数据。

Pillow 6.0.0发行说明

getexif()已添加,它返回一个Exif实例。可以像字典一样检索和设置值。保存JPEG,PNG或WEBP时,可以将实例作为exif参数传递,以包括输出图像中的所有更改。

所述Exif输出可以被简单地浇铸到一个dict,从而使EXIF数据然后可以作为一个常规的键-值对被访问dict。键是16位整数,可以使用ExifTags.TAGS模块映射到其字符串名称。

from PIL import Image, ExifTags

img = Image.open("sample.jpg")
img_exif = img.getexif()
print(type(img_exif))
# <class 'PIL.Image.Exif'>

if img_exif is None:
    print("Sorry, image has no exif data.")
else:
    img_exif_dict = dict(img_exif)
    print(img_exif_dict)
    # { ... 42035: 'FUJIFILM', 42036: 'XF23mmF2 R WR', 42037: '75A14188' ... }
    for key, val in img_exif_dict.items():
        if key in ExifTags.TAGS:
            print(f"{ExifTags.TAGS[key]}:{repr(val)}")
            # ExifVersion:b'0230'
            # ...
            # FocalLength:(2300, 100)
            # ColorSpace:1
            # FocalLengthIn35mmFilm:35
            # ...
            # Model:'X-T2'
            # Make:'FUJIFILM'
            # ...
            # DateTime:'2019:12:01 21:30:07'
            # ...

使用Python 3.6.8和Pillow==6.0.0

For Python3.x and starting Pillow==6.0.0, Image objects now provide a getexif() method that returns <class 'PIL.Image.Exif'> or None if the image has no EXIF data.

From Pillow 6.0.0 release notes:

getexif() has been added, which returns an Exif instance. Values can be retrieved and set like a dictionary. When saving JPEG, PNG or WEBP, the instance can be passed as an exif argument to include any changes in the output image.

As stated, the Exif output can simply be casted to a dict with the EXIF data accessible as regular key-value pairs. The keys are 16-bit integers that can be mapped to their string names using the ExifTags.TAGS module.

from PIL import Image, ExifTags

img = Image.open("sample.jpg")
img_exif = img.getexif()
print(type(img_exif))
# <class 'PIL.Image.Exif'>

if img_exif is None:
    print("Sorry, image has no exif data.")
else:
    img_exif_dict = dict(img_exif)
    print(img_exif_dict)
    # { ... 42035: 'FUJIFILM', 42036: 'XF23mmF2 R WR', 42037: '75A14188' ... }
    for key, val in img_exif_dict.items():
        if key in ExifTags.TAGS:
            print(f"{ExifTags.TAGS[key]}:{repr(val)}")
            # ExifVersion:b'0230'
            # ...
            # FocalLength:(2300, 100)
            # ColorSpace:1
            # FocalLengthIn35mmFilm:35
            # ...
            # Model:'X-T2'
            # Make:'FUJIFILM'
            # ...
            # DateTime:'2019:12:01 21:30:07'
            # ...

Tested with Python 3.6.8 and Pillow==6.0.0.


回答 4

import sys
import PIL
import PIL.Image as PILimage
from PIL import ImageDraw, ImageFont, ImageEnhance
from PIL.ExifTags import TAGS, GPSTAGS



class Worker(object):
    def __init__(self, img):
        self.img = img
        self.exif_data = self.get_exif_data()
        self.lat = self.get_lat()
        self.lon = self.get_lon()
        self.date =self.get_date_time()
        super(Worker, self).__init__()

    @staticmethod
    def get_if_exist(data, key):
        if key in data:
            return data[key]
        return None

    @staticmethod
    def convert_to_degress(value):
        """Helper function to convert the GPS coordinates
        stored in the EXIF to degress in float format"""
        d0 = value[0][0]
        d1 = value[0][1]
        d = float(d0) / float(d1)
        m0 = value[1][0]
        m1 = value[1][1]
        m = float(m0) / float(m1)

        s0 = value[2][0]
        s1 = value[2][1]
        s = float(s0) / float(s1)

        return d + (m / 60.0) + (s / 3600.0)

    def get_exif_data(self):
        """Returns a dictionary from the exif data of an PIL Image item. Also
        converts the GPS Tags"""
        exif_data = {}
        info = self.img._getexif()
        if info:
            for tag, value in info.items():
                decoded = TAGS.get(tag, tag)
                if decoded == "GPSInfo":
                    gps_data = {}
                    for t in value:
                        sub_decoded = GPSTAGS.get(t, t)
                        gps_data[sub_decoded] = value[t]

                    exif_data[decoded] = gps_data
                else:
                    exif_data[decoded] = value
        return exif_data

    def get_lat(self):
        """Returns the latitude and longitude, if available, from the 
        provided exif_data (obtained through get_exif_data above)"""
        # print(exif_data)
        if 'GPSInfo' in self.exif_data:
            gps_info = self.exif_data["GPSInfo"]
            gps_latitude = self.get_if_exist(gps_info, "GPSLatitude")
            gps_latitude_ref = self.get_if_exist(gps_info, 'GPSLatitudeRef')
            if gps_latitude and gps_latitude_ref:
                lat = self.convert_to_degress(gps_latitude)
                if gps_latitude_ref != "N":
                    lat = 0 - lat
                lat = str(f"{lat:.{5}f}")
                return lat
        else:
            return None

    def get_lon(self):
        """Returns the latitude and longitude, if available, from the 
        provided exif_data (obtained through get_exif_data above)"""
        # print(exif_data)
        if 'GPSInfo' in self.exif_data:
            gps_info = self.exif_data["GPSInfo"]
            gps_longitude = self.get_if_exist(gps_info, 'GPSLongitude')
            gps_longitude_ref = self.get_if_exist(gps_info, 'GPSLongitudeRef')
            if gps_longitude and gps_longitude_ref:
                lon = self.convert_to_degress(gps_longitude)
                if gps_longitude_ref != "E":
                    lon = 0 - lon
                lon = str(f"{lon:.{5}f}")
                return lon
        else:
            return None

    def get_date_time(self):
        if 'DateTime' in self.exif_data:
            date_and_time = self.exif_data['DateTime']
            return date_and_time 

if __name__ == '__main__':
    try:
        img = PILimage.open(sys.argv[1])
        image = Worker(img)
        lat = image.lat
        lon = image.lon
        date = image.date
        print(date, lat, lon)

    except Exception as e:
        print(e)
import sys
import PIL
import PIL.Image as PILimage
from PIL import ImageDraw, ImageFont, ImageEnhance
from PIL.ExifTags import TAGS, GPSTAGS



class Worker(object):
    def __init__(self, img):
        self.img = img
        self.exif_data = self.get_exif_data()
        self.lat = self.get_lat()
        self.lon = self.get_lon()
        self.date =self.get_date_time()
        super(Worker, self).__init__()

    @staticmethod
    def get_if_exist(data, key):
        if key in data:
            return data[key]
        return None

    @staticmethod
    def convert_to_degress(value):
        """Helper function to convert the GPS coordinates
        stored in the EXIF to degress in float format"""
        d0 = value[0][0]
        d1 = value[0][1]
        d = float(d0) / float(d1)
        m0 = value[1][0]
        m1 = value[1][1]
        m = float(m0) / float(m1)

        s0 = value[2][0]
        s1 = value[2][1]
        s = float(s0) / float(s1)

        return d + (m / 60.0) + (s / 3600.0)

    def get_exif_data(self):
        """Returns a dictionary from the exif data of an PIL Image item. Also
        converts the GPS Tags"""
        exif_data = {}
        info = self.img._getexif()
        if info:
            for tag, value in info.items():
                decoded = TAGS.get(tag, tag)
                if decoded == "GPSInfo":
                    gps_data = {}
                    for t in value:
                        sub_decoded = GPSTAGS.get(t, t)
                        gps_data[sub_decoded] = value[t]

                    exif_data[decoded] = gps_data
                else:
                    exif_data[decoded] = value
        return exif_data

    def get_lat(self):
        """Returns the latitude and longitude, if available, from the 
        provided exif_data (obtained through get_exif_data above)"""
        # print(exif_data)
        if 'GPSInfo' in self.exif_data:
            gps_info = self.exif_data["GPSInfo"]
            gps_latitude = self.get_if_exist(gps_info, "GPSLatitude")
            gps_latitude_ref = self.get_if_exist(gps_info, 'GPSLatitudeRef')
            if gps_latitude and gps_latitude_ref:
                lat = self.convert_to_degress(gps_latitude)
                if gps_latitude_ref != "N":
                    lat = 0 - lat
                lat = str(f"{lat:.{5}f}")
                return lat
        else:
            return None

    def get_lon(self):
        """Returns the latitude and longitude, if available, from the 
        provided exif_data (obtained through get_exif_data above)"""
        # print(exif_data)
        if 'GPSInfo' in self.exif_data:
            gps_info = self.exif_data["GPSInfo"]
            gps_longitude = self.get_if_exist(gps_info, 'GPSLongitude')
            gps_longitude_ref = self.get_if_exist(gps_info, 'GPSLongitudeRef')
            if gps_longitude and gps_longitude_ref:
                lon = self.convert_to_degress(gps_longitude)
                if gps_longitude_ref != "E":
                    lon = 0 - lon
                lon = str(f"{lon:.{5}f}")
                return lon
        else:
            return None

    def get_date_time(self):
        if 'DateTime' in self.exif_data:
            date_and_time = self.exif_data['DateTime']
            return date_and_time 

if __name__ == '__main__':
    try:
        img = PILimage.open(sys.argv[1])
        image = Worker(img)
        lat = image.lat
        lon = image.lon
        date = image.date
        print(date, lat, lon)

    except Exception as e:
        print(e)

回答 5

我发现使用._getexif在更高版本的python中不起作用,而且,它是受保护的类,应该尽可能避免使用它。在深入调试器之后,这是我发现获取图像的EXIF数据的最佳方法:

from PIL import Image

def get_exif(path):
    return Image.open(path).info['parsed_exif']

这将返回图像的所有EXIF数据的字典。

注意:对于Python3.x,请使用Pillow而不是PIL

I have found that using ._getexif doesn’t work in higher python versions, moreover, it is a protected class and one should avoid using it if possible. After digging around the debugger this is what I found to be the best way to get the EXIF data for an image:

from PIL import Image

def get_exif(path):
    return Image.open(path).info['parsed_exif']

This returns a dictionary of all the EXIF data of an image.

Note: For Python3.x use Pillow instead of PIL


回答 6

这是一个可能更容易阅读的内容。希望这会有所帮助。

from PIL import Image
from PIL import ExifTags

exifData = {}
img = Image.open(picture.jpg)
exifDataRaw = img._getexif()
for tag, value in exifDataRaw.items():
    decodedTag = ExifTags.TAGS.get(tag, tag)
    exifData[decodedTag] = value

Here’s the one that may be little easier to read. Hope this is helpful.

from PIL import Image
from PIL import ExifTags

exifData = {}
img = Image.open(picture.jpg)
exifDataRaw = img._getexif()
for tag, value in exifDataRaw.items():
    decodedTag = ExifTags.TAGS.get(tag, tag)
    exifData[decodedTag] = value

回答 7

我通常使用pyexiv2在JPG文件中设置exif信息,但是当我在脚本QGIS脚本中导入库时崩溃。

我找到了使用库exif的解决方案:

https://pypi.org/project/exif/

它是如此易于使用,而且使用Qgis我没有任何问题。

在此代码中,我将GPS坐标插入屏幕快照:

from exif import Image
with open(file_name, 'rb') as image_file:
    my_image = Image(image_file)

my_image.make = "Python"
my_image.gps_latitude_ref=exif_lat_ref
my_image.gps_latitude=exif_lat
my_image.gps_longitude_ref= exif_lon_ref
my_image.gps_longitude= exif_lon

with open(file_name, 'wb') as new_image_file:
    new_image_file.write(my_image.get_file())

I usually use pyexiv2 to set exif information in JPG files, but when I import the library in a script QGIS script crash.

I found a solution using the library exif:

https://pypi.org/project/exif/

It’s so easy to use, and with Qgis I don,’t have any problem.

In this code I insert GPS coordinates to a snapshot of screen:

from exif import Image
with open(file_name, 'rb') as image_file:
    my_image = Image(image_file)

my_image.make = "Python"
my_image.gps_latitude_ref=exif_lat_ref
my_image.gps_latitude=exif_lat
my_image.gps_longitude_ref= exif_lon_ref
my_image.gps_longitude= exif_lon

with open(file_name, 'wb') as new_image_file:
    new_image_file.write(my_image.get_file())

scipy.misc模块没有属性读取?

问题:scipy.misc模块没有属性读取?

我正在尝试读取图像。但是,它不接受该scipy.misc.imread零件。这可能是什么原因?

>>> import scipy
>>> scipy.misc
<module 'scipy.misc' from 'C:\Python27\lib\site-packages\scipy\misc\__init__.pyc'>
>>> scipy.misc.imread('test.tif')
Traceback (most recent call last):
  File "<pyshell#11>", line 1, in <module>
    scipy.misc.imread('test.tif')
AttributeError: 'module' object has no attribute 'imread'

I am trying to read an image with scipy. However it does not accept the scipy.misc.imread part. What could be the cause of this?

>>> import scipy
>>> scipy.misc
<module 'scipy.misc' from 'C:\Python27\lib\site-packages\scipy\misc\__init__.pyc'>
>>> scipy.misc.imread('test.tif')
Traceback (most recent call last):
  File "<pyshell#11>", line 1, in <module>
    scipy.misc.imread('test.tif')
AttributeError: 'module' object has no attribute 'imread'

回答 0

您需要安装Pillow(以前称为PIL)。从在文档scipy.misc

请注意,Pillow不是SciPy的依赖项,但是如果没有它,下面列表中指示的图像处理功能将不可用:

imread

安装Pillow后,我可以imread如下访问:

In [1]: import scipy.misc

In [2]: scipy.misc.imread
Out[2]: <function scipy.misc.pilutil.imread>

You need to install Pillow (formerly PIL). From the docs on scipy.misc:

Note that Pillow is not a dependency of SciPy but the image manipulation functions indicated in the list below are not available without it:

imread

After installing Pillow, I was able to access imread as follows:

In [1]: import scipy.misc

In [2]: scipy.misc.imread
Out[2]: <function scipy.misc.pilutil.imread>

回答 1

imread在SciPy 1.0.0中已弃用,在1.2.0中将被删除。使用imageio.imread代替。

import imageio
im = imageio.imread('astronaut.png')
im.shape  # im is a numpy array
(512, 512, 3)
imageio.imwrite('imageio:astronaut-gray.jpg', im[:, :, 0])

imread is deprecated in SciPy 1.0.0, and will be removed in 1.2.0. Use imageio.imread instead.

import imageio
im = imageio.imread('astronaut.png')
im.shape  # im is a numpy array
(512, 512, 3)
imageio.imwrite('imageio:astronaut-gray.jpg', im[:, :, 0])

回答 2

版本1.2.0之后,imread贬值!因此,要解决此问题,我必须安装版本1.1.0。

pip install scipy==1.1.0

imread is depreciated after version 1.2.0! So to solve this issue I had to install version 1.1.0.

pip install scipy==1.1.0

回答 3

对于Python 3,最好是使用imreadmatplotlib.pyplot

from matplotlib.pyplot import imread

For Python 3, it is best to use imread in matplotlib.pyplot:

from matplotlib.pyplot import imread

回答 4

如果有人遇到相同的问题,请卸载scipy并安装scipy == 1.1.0

$ pip uninstall scipy

$ pip install scipy==1.1.0

In case anyone encountering the same issue, please uninstall scipy and install scipy==1.1.0

$ pip uninstall scipy

$ pip install scipy==1.1.0

回答 5

您需要Python Imaging Library(PIL),但是but!PIL项目似乎已被放弃。特别是,它尚未移植到Python3。因此,如果要在Python 3中使用PIL功能,则最好使用Pillow,它是PIL的半官方分支,并且正在积极开发中。实际上,如果您完全需要现代的PIL实现,我建议您选择Pillow。就像一样简单pip install pillow。由于它使用与PIL相同的命名空间,因此实质上是直接替代。

这个叉子有多“半官方”?你可能会问。“ 枕头”文档的“ 关于”页面说:

自上次发布PIL之后,随着时间的流逝,新发布PIL的可能性降低。但是,我们尚未听到官方的“ PIL已死”声明。因此,如果您仍然希望支持PIL,请先在此处报告问题,然后在此处打开相应的枕头票。

请提供第一张票证的链接,以便我们可以跟踪上游问题。

但是,PIL 官方站点上的最新PIL版本发布于2009年11月15日。我认为,在将近八年没有新版本发布之时,我们可以肯定地说Pillow是PIL的继承者。因此,即使您不需要Python 3支持,我也建议您避免使用PyPI中可用的古老PIL 1.1.6发行版,而只需安装新的,最新的,兼容的Pillow。

You need the Python Imaging Library (PIL) but alas! the PIL project seems to have been abandoned. In particular, it hasn’t been ported to Python 3. So if you want PIL functionality in Python 3, you’ll do well do use Pillow, which is the semi-official fork of PIL and appears to be actively developed. Actually, if you need a modern PIL implementation at all I’d recommend Pillow. It’s as simple as pip install pillow. As it uses the same namespace as PIL it’s essentially a drop-in replacement.

How “semi-official” is this fork? you may ask. The About page of the Pillow docs say this:

As more time passes since the last PIL release, the likelihood of a new PIL release decreases. However, we’ve yet to hear an official “PIL is dead” announcement. So if you still want to support PIL, please report issues here first, then open corresponding Pillow tickets here.

Please provide a link to the first ticket so we can track the issue(s) upstream.

However, the most recent PIL release on the official PIL site is dated November 15, 2009. I think we can safely proclaim Pillow as the successor of PIL after (as of this writing) nearly eight years of no new releases. So even if you don’t need Python 3 support, I suggest you eschew the ancient PIL 1.1.6 distribution available in PyPI and just install fresh, up-to-date, compatible Pillow.


回答 6

通过以下命令安装枕头库:

pip install pillow

请注意,所选答案已过时。查看SciPy的文档

请注意,Pillow(https://python-pillow.org/)不是SciPy的依赖项,但如果没有它,则下面列表中指示的图像处理功能将不可用。

Install the Pillow library by following commands:

pip install pillow

Note, the selected answer has been outdated. See the docs of SciPy

Note that Pillow (https://python-pillow.org/) is not a dependency of SciPy, but the image manipulation functions indicated in the list below are not available without it.


回答 7

答案是:misc.imread在SciPy 1.0.0中已弃用,在1.2.0中将被删除。imageio是一个选项,它将返回类型为object的对象:

<class 'imageio.core.util.Image'>

但要使用image2,而不要使用imageio

import cv2
im = cv2.imread('astronaut.png')

我将是类型: <class 'numpy.ndarray'>

由于numpy数组的计算速度更快。

As answered misc.imread is deprecated in SciPy 1.0.0, and will be removed in 1.2.0. imageio is one option,it will return object of type :

<class 'imageio.core.util.Image'>

but instead of imageio, use cv2

import cv2
im = cv2.imread('astronaut.png')

im will be of type : <class 'numpy.ndarray'>

As numpy arrays are faster to compute.


回答 8

Imread使用PIL库,如果已安装该库,则使用:“ from scipy.ndimage import imread”

资料来源:http : //docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.ndimage.imread.html

Imread uses PIL library, if the library is installed use : “from scipy.ndimage import imread”

Source: http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.ndimage.imread.html


回答 9

python -m pip install pillow

这对我有用。

python -m pip install pillow

This worked for me.


回答 10

您需要一个python图像库(PIL),但是现在仅PIL还不够,您最好安装Pillow。这很好。

You need a python image library (PIL), but now PIL only is not enough, you’d better install Pillow. This works well.


回答 11

在Jupyter Notebook中运行以下命令,我收到了类似的错误消息:

from skimage import data
photo_data = misc.imread('C:/Users/ers.jpg')
type(photo_data)

“错误”消息:

D:\ Program Files(x86)\ Microsoft Visual Studio \ Shared \ Anaconda3_64 \ lib \ site-packages \ ipykernel_launcher.py:3:DeprecationWarning:已imread弃用!imread在SciPy 1.0.0中已弃用,在1.2.0中将被删除。使用imageio.imread 代替。这与ipykernel软件包分开,因此我们可以避免导入,直到

并使用以下我解决了:

import matplotlib.pyplot
photo_data = matplotlib.pyplot.imread('C:/Users/ers.jpg')
type(photo_data)

Running the following in a Jupyter Notebook, I had a similar error message:

from skimage import data
photo_data = misc.imread('C:/Users/ers.jpg')
type(photo_data)

‘error’ msg:

D:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\ipykernel_launcher.py:3: DeprecationWarning: imread is deprecated! imread is deprecated in SciPy 1.0.0, and will be removed in 1.2.0. Use imageio.imread instead. This is separate from the ipykernel package so we can avoid doing imports until

And using the following I got it solved:

import matplotlib.pyplot
photo_data = matplotlib.pyplot.imread('C:/Users/ers.jpg')
type(photo_data)

回答 12

我在jupyter笔记本上具有图像提取所需的所有软件包,但即使如此,它仍然显示相同的错误。

Jupyter Notebook上的错误

阅读以上评论,我已经安装了必需的软件包。请告诉我是否错过了一些包裹。

pip3 freeze | grep -i -E "pillow|scipy|scikit-image"
Pillow==5.4.1
scikit-image==0.14.2

scipy==1.2.1

I have all the packages required for the image extraction on jupyter notebook, but even then it shows me the same error.

Error on Jupyter Notebook

Reading the above comments, I have installed the required packages. Please do tell if I have missed some packages.

pip3 freeze | grep -i -E "pillow|scipy|scikit-image"
Pillow==5.4.1
scikit-image==0.14.2

scipy==1.2.1

回答 13

在python 3.6中为我工作的解决方案如下

py -m pip安装枕头

The solution that work for me in python 3.6 is the following

py -m pip install Pillow


如何使用PIL保存图像?

问题:如何使用PIL保存图像?

我刚刚使用Python图像库(PIL)进行了一些图像处理,这是我之前发现的用于执行图像的傅立叶变换的文章,但我无法使用save函数。整个代码运行良好,但不会保存生成的图像:

from PIL import Image
import numpy as np

i = Image.open("C:/Users/User/Desktop/mesh.bmp")
i = i.convert("L")
a = np.asarray(i)
b = np.abs(np.fft.rfft2(a))
j = Image.fromarray(b)
j.save("C:/Users/User/Desktop/mesh_trans",".bmp")

我得到的错误如下:

save_handler = SAVE[string.upper(format)] # unknown format
    KeyError: '.BMP'

如何使用Pythons PIL保存图像?

I have just done some image processing using the Python image library (PIL) using a post I found earlier to perform fourier transforms of images and I can’t get the save function to work. The whole code works fine but it just wont save the resulting image:

from PIL import Image
import numpy as np

i = Image.open("C:/Users/User/Desktop/mesh.bmp")
i = i.convert("L")
a = np.asarray(i)
b = np.abs(np.fft.rfft2(a))
j = Image.fromarray(b)
j.save("C:/Users/User/Desktop/mesh_trans",".bmp")

The error I get is the following:

save_handler = SAVE[string.upper(format)] # unknown format
    KeyError: '.BMP'

How can I save an image with Pythons PIL?


回答 0

解决了与文件扩展名有关的错误,您可以使用BMP(不带点)或将输出名称与扩展名一起传递。现在要处理该错误,您需要在频域中适当地修改数据以将其保存为整数图像,PIL这告诉您它不接受将浮点数据保存为BMP。

这是进行转换以实现正确可视化的建议(还有其他一些小的修改,例如使用fftshiftnumpy.array代替numpy.asarray):

import sys
import numpy
from PIL import Image

img = Image.open(sys.argv[1]).convert('L')

im = numpy.array(img)
fft_mag = numpy.abs(numpy.fft.fftshift(numpy.fft.fft2(im)))

visual = numpy.log(fft_mag)
visual = (visual - visual.min()) / (visual.max() - visual.min())

result = Image.fromarray((visual * 255).astype(numpy.uint8))
result.save('out.bmp')

The error regarding the file extension has been handled, you either use BMP (without the dot) or pass the output name with the extension already. Now to handle the error you need to properly modify your data in the frequency domain to be saved as an integer image, PIL is telling you that it doesn’t accept float data to save as BMP.

Here is a suggestion (with other minor modifications, like using fftshift and numpy.array instead of numpy.asarray) for doing the conversion for proper visualization:

import sys
import numpy
from PIL import Image

img = Image.open(sys.argv[1]).convert('L')

im = numpy.array(img)
fft_mag = numpy.abs(numpy.fft.fftshift(numpy.fft.fft2(im)))

visual = numpy.log(fft_mag)
visual = (visual - visual.min()) / (visual.max() - visual.min())

result = Image.fromarray((visual * 255).astype(numpy.uint8))
result.save('out.bmp')

回答 1

您应该能够简单地让PIL从扩展名中获取文件类型,即使用:

j.save("C:/Users/User/Desktop/mesh_trans.bmp")

You should be able to simply let PIL get the filetype from extension, i.e. use:

j.save("C:/Users/User/Desktop/mesh_trans.bmp")

回答 2

尝试删除.之前的.bmp(它BMP与预期的不匹配)。正如您从错误中看到的那样,save_handler就是format您提供的大写字母,然后在中寻找匹配项SAVE。但是,该对象中的对应键为BMP(而不是.BMP)。

我不太了解PIL,但是通过一些快速搜索,似乎mode图像的问题。将的定义更改j为:

j = Image.fromarray(b, mode='RGB')

似乎为我工作(但是请注意,我对的了解很少PIL,因此我建议使用@mmgp的解决方案,因为他/她清楚地知道他们在做什么:)))。对于的类型mode,我使用了页面-希望那里的一种选择适合您。

Try removing the . before the .bmp (it isn’t matching BMP as expected). As you can see from the error, the save_handler is upper-casing the format you provided and then looking for a match in SAVE. However the corresponding key in that object is BMP (instead of .BMP).

I don’t know a great deal about PIL, but from some quick searching around it seems that it is a problem with the mode of the image. Changing the definition of j to:

j = Image.fromarray(b, mode='RGB')

Seemed to work for me (however note that I have very little knowledge of PIL, so I would suggest using @mmgp’s solution as s/he clearly knows what they are doing :) ). For the types of mode, I used this page – hopefully one of the choices there will work for you.


回答 3

我知道这很旧,但是我发现(在使用Pillow的同时)通过使用open(fp, 'w')然后保存文件来打开文件是可行的。例如:

with open(fp, 'w') as f:
    result.save(f)

fp 当然是文件路径。

I know that this is old, but I’ve found that (while using Pillow) opening the file by using open(fp, 'w') and then saving the file will work. E.g:

with open(fp, 'w') as f:
    result.save(f)

fp being the file path, of course.


使用PIL将RGBA PNG转换为RGB

问题:使用PIL将RGBA PNG转换为RGB

我正在使用PIL将使用Django上传的透明PNG图像转换为JPG文件。输出看起来坏了。

源文件

Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')

要么

Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')

结果

两种方式的结果图像如下所示:

有没有办法解决这个问题?我想要白色背景曾经是透明背景。


多亏了出色的答案,我提出了以下函数集合:

import Image
import numpy as np


def alpha_to_color(image, color=(255, 255, 255)):
    """Set all fully transparent pixels of an RGBA image to the specified color.
    This is a very simple solution that might leave over some ugly edges, due
    to semi-transparent areas. You should use alpha_composite_with color instead.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    x = np.array(image)
    r, g, b, a = np.rollaxis(x, axis=-1)
    r[a == 0] = color[0]
    g[a == 0] = color[1]
    b[a == 0] = color[2] 
    x = np.dstack([r, g, b, a])
    return Image.fromarray(x, 'RGBA')


def alpha_composite(front, back):
    """Alpha composite two RGBA images.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    front -- PIL RGBA Image object
    back -- PIL RGBA Image object

    """
    front = np.asarray(front)
    back = np.asarray(back)
    result = np.empty(front.shape, dtype='float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    falpha = front[alpha] / 255.0
    balpha = back[alpha] / 255.0
    result[alpha] = falpha + balpha * (1 - falpha)
    old_setting = np.seterr(invalid='ignore')
    result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
    np.seterr(**old_setting)
    result[alpha] *= 255
    np.clip(result, 0, 255)
    # astype('uint8') maps np.nan and np.inf to 0
    result = result.astype('uint8')
    result = Image.fromarray(result, 'RGBA')
    return result


def alpha_composite_with_color(image, color=(255, 255, 255)):
    """Alpha composite an RGBA image with a single color image of the
    specified color and the same size as the original image.

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    back = Image.new('RGBA', size=image.size, color=color + (255,))
    return alpha_composite(image, back)


def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    NOTE: This version is much slower than the
    alpha_composite_with_color solution. Use it only if
    numpy is not available.

    Source: http://stackoverflow.com/a/9168169/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    def blend_value(back, front, a):
        return (front * a + back * (255 - a)) / 255

    def blend_rgba(back, front):
        result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
        return tuple(result + [255])

    im = image.copy()  # don't edit the reference directly
    p = im.load()  # load pixel array
    for y in range(im.size[1]):
        for x in range(im.size[0]):
            p[x, y] = blend_rgba(color + (255,), p[x, y])

    return im

def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    Simpler, faster version than the solutions above.

    Source: http://stackoverflow.com/a/9459208/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    image.load()  # needed for split()
    background = Image.new('RGB', image.size, color)
    background.paste(image, mask=image.split()[3])  # 3 is the alpha channel
    return background

性能

简单的非合成alpha_to_color功能是最快的解决方案,但由于它不能处理半透明区域,因此留下了丑陋的边界。

纯粹的PIL和numpy合成解决方案都可以提供出色的结果,但alpha_composite_with_color其速度(8.93毫秒)比pure_pil_alpha_to_color(79.6毫秒)要快得多。如果您的系统上有numpy可用,那就是这种方式。 (更新:新的纯PIL版本是所有提到的解决方案中最快的。)

$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop

I’m using PIL to convert a transparent PNG image uploaded with Django to a JPG file. The output looks broken.

Source file

Code

Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')

or

Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')

Result

Both ways, the resulting image looks like this:

Is there a way to fix this? I’d like to have white background where the transparent background used to be.


Solution

Thanks to the great answers, I’ve come up with the following function collection:

import Image
import numpy as np


def alpha_to_color(image, color=(255, 255, 255)):
    """Set all fully transparent pixels of an RGBA image to the specified color.
    This is a very simple solution that might leave over some ugly edges, due
    to semi-transparent areas. You should use alpha_composite_with color instead.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    x = np.array(image)
    r, g, b, a = np.rollaxis(x, axis=-1)
    r[a == 0] = color[0]
    g[a == 0] = color[1]
    b[a == 0] = color[2] 
    x = np.dstack([r, g, b, a])
    return Image.fromarray(x, 'RGBA')


def alpha_composite(front, back):
    """Alpha composite two RGBA images.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    front -- PIL RGBA Image object
    back -- PIL RGBA Image object

    """
    front = np.asarray(front)
    back = np.asarray(back)
    result = np.empty(front.shape, dtype='float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    falpha = front[alpha] / 255.0
    balpha = back[alpha] / 255.0
    result[alpha] = falpha + balpha * (1 - falpha)
    old_setting = np.seterr(invalid='ignore')
    result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
    np.seterr(**old_setting)
    result[alpha] *= 255
    np.clip(result, 0, 255)
    # astype('uint8') maps np.nan and np.inf to 0
    result = result.astype('uint8')
    result = Image.fromarray(result, 'RGBA')
    return result


def alpha_composite_with_color(image, color=(255, 255, 255)):
    """Alpha composite an RGBA image with a single color image of the
    specified color and the same size as the original image.

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    back = Image.new('RGBA', size=image.size, color=color + (255,))
    return alpha_composite(image, back)


def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    NOTE: This version is much slower than the
    alpha_composite_with_color solution. Use it only if
    numpy is not available.

    Source: http://stackoverflow.com/a/9168169/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    def blend_value(back, front, a):
        return (front * a + back * (255 - a)) / 255

    def blend_rgba(back, front):
        result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
        return tuple(result + [255])

    im = image.copy()  # don't edit the reference directly
    p = im.load()  # load pixel array
    for y in range(im.size[1]):
        for x in range(im.size[0]):
            p[x, y] = blend_rgba(color + (255,), p[x, y])

    return im

def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    Simpler, faster version than the solutions above.

    Source: http://stackoverflow.com/a/9459208/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    image.load()  # needed for split()
    background = Image.new('RGB', image.size, color)
    background.paste(image, mask=image.split()[3])  # 3 is the alpha channel
    return background

Performance

The simple non-compositing alpha_to_color function is the fastest solution, but leaves behind ugly borders because it does not handle semi transparent areas.

Both the pure PIL and the numpy compositing solutions give great results, but alpha_composite_with_color is much faster (8.93 msec) than pure_pil_alpha_to_color (79.6 msec). If numpy is available on your system, that’s the way to go. (Update: The new pure PIL version is the fastest of all mentioned solutions.)

$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop

回答 0

这是一个简单得多的版本-不确定性能如何。很大程度上基于我在构建RGBA -> JPG + BG对单缩略图的支持时发现的一些django代码段。

from PIL import Image

png = Image.open(object.logo.path)
png.load() # required for png.split()

background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel

background.save('foo.jpg', 'JPEG', quality=80)

结果@ 80%

结果@ 50%

Here’s a version that’s much simpler – not sure how performant it is. Heavily based on some django snippet I found while building RGBA -> JPG + BG support for sorl thumbnails.

from PIL import Image

png = Image.open(object.logo.path)
png.load() # required for png.split()

background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel

background.save('foo.jpg', 'JPEG', quality=80)

Result @80%

Result @ 50%


回答 1

通过使用Image.alpha_composite,Yuji’Tomita’Tomita的解决方案变得更简单。tuple index out of range如果png没有alpha通道,则此代码可以避免错误。

from PIL import Image

png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255,255,255))

alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)

By using Image.alpha_composite, the solution by Yuji ‘Tomita’ Tomita become simpler. This code can avoid a tuple index out of range error if png has no alpha channel.

from PIL import Image

png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255,255,255))

alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)

回答 2

透明部分大部分具有RGBA值(0,0,0,0)。由于JPG没有透明度,因此jpeg值设置为(0,0,0),为黑色。

在圆形图标周围,存在具有非零RGB值的像素,其中A =0。因此,它们在PNG中看起来是透明的,但在JPG中是有趣的。

您可以使用numpy将A == 0的所有像素设置为R = G = B = 255,如下所示:

import Image
import numpy as np

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')


请注意,徽标还具有一些半透明像素,用于平滑单词和图标周围的边缘。保存为jpeg会忽略半透明性,从而使生成的jpeg看起来参差不齐。

使用imagemagick的convert命令可以得到更好的质量结果:

convert logo.png -background white -flatten /tmp/out.jpg


为了使用numpy进行质量更好的混合,您可以使用alpha合成

import Image
import numpy as np

def alpha_composite(src, dst):
    '''
    Return the alpha composite of src and dst.

    Parameters:
    src -- PIL RGBA Image object
    dst -- PIL RGBA Image object

    The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
    '''
    # http://stackoverflow.com/a/3375291/190597
    # http://stackoverflow.com/a/9166671/190597
    src = np.asarray(src)
    dst = np.asarray(dst)
    out = np.empty(src.shape, dtype = 'float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    src_a = src[alpha]/255.0
    dst_a = dst[alpha]/255.0
    out[alpha] = src_a+dst_a*(1-src_a)
    old_setting = np.seterr(invalid = 'ignore')
    out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
    np.seterr(**old_setting)    
    out[alpha] *= 255
    np.clip(out,0,255)
    # astype('uint8') maps np.nan (and np.inf) to 0
    out = out.astype('uint8')
    out = Image.fromarray(out, 'RGBA')
    return out            

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')

The transparent parts mostly have RGBA value (0,0,0,0). Since the JPG has no transparency, the jpeg value is set to (0,0,0), which is black.

Around the circular icon, there are pixels with nonzero RGB values where A = 0. So they look transparent in the PNG, but funny-colored in the JPG.

You can set all pixels where A == 0 to have R = G = B = 255 using numpy like this:

import Image
import numpy as np

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')


Note that the logo also has some semi-transparent pixels used to smooth the edges around the words and icon. Saving to jpeg ignores the semi-transparency, making the resultant jpeg look quite jagged.

A better quality result could be made using imagemagick’s convert command:

convert logo.png -background white -flatten /tmp/out.jpg


To make a nicer quality blend using numpy, you could use alpha compositing:

import Image
import numpy as np

def alpha_composite(src, dst):
    '''
    Return the alpha composite of src and dst.

    Parameters:
    src -- PIL RGBA Image object
    dst -- PIL RGBA Image object

    The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
    '''
    # http://stackoverflow.com/a/3375291/190597
    # http://stackoverflow.com/a/9166671/190597
    src = np.asarray(src)
    dst = np.asarray(dst)
    out = np.empty(src.shape, dtype = 'float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    src_a = src[alpha]/255.0
    dst_a = dst[alpha]/255.0
    out[alpha] = src_a+dst_a*(1-src_a)
    old_setting = np.seterr(invalid = 'ignore')
    out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
    np.seterr(**old_setting)    
    out[alpha] *= 255
    np.clip(out,0,255)
    # astype('uint8') maps np.nan (and np.inf) to 0
    out = out.astype('uint8')
    out = Image.fromarray(out, 'RGBA')
    return out            

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')


回答 3

这是纯PIL解决方案。

def blend_value(under, over, a):
    return (over*a + under*(255-a)) / 255

def blend_rgba(under, over):
    return tuple([blend_value(under[i], over[i], over[3]) for i in (0,1,2)] + [255])

white = (255, 255, 255, 255)

im = Image.open(object.logo.path)
p = im.load()
for y in range(im.size[1]):
    for x in range(im.size[0]):
        p[x,y] = blend_rgba(white, p[x,y])
im.save('/tmp/output.png')

Here’s a solution in pure PIL.

def blend_value(under, over, a):
    return (over*a + under*(255-a)) / 255

def blend_rgba(under, over):
    return tuple([blend_value(under[i], over[i], over[3]) for i in (0,1,2)] + [255])

white = (255, 255, 255, 255)

im = Image.open(object.logo.path)
p = im.load()
for y in range(im.size[1]):
    for x in range(im.size[0]):
        p[x,y] = blend_rgba(white, p[x,y])
im.save('/tmp/output.png')

回答 4

没坏 它完全按照您的指示进行。这些像素是黑色的,具有完全的透明度。您将需要遍历所有像素,并将完全透明的像素转换为白色。

It’s not broken. It’s doing exactly what you told it to; those pixels are black with full transparency. You will need to iterate across all pixels and convert ones with full transparency to white.


回答 5

import numpy as np
import PIL

def convert_image(image_file):
    image = Image.open(image_file) # this could be a 4D array PNG (RGBA)
    original_width, original_height = image.size

    np_image = np.array(image)
    new_image = np.zeros((np_image.shape[0], np_image.shape[1], 3)) 
    # create 3D array

    for each_channel in range(3):
        new_image[:,:,each_channel] = np_image[:,:,each_channel]  
        # only copy first 3 channels.

    # flushing
    np_image = []
    return new_image
import numpy as np
import PIL

def convert_image(image_file):
    image = Image.open(image_file) # this could be a 4D array PNG (RGBA)
    original_width, original_height = image.size

    np_image = np.array(image)
    new_image = np.zeros((np_image.shape[0], np_image.shape[1], 3)) 
    # create 3D array

    for each_channel in range(3):
        new_image[:,:,each_channel] = np_image[:,:,each_channel]  
        # only copy first 3 channels.

    # flushing
    np_image = []
    return new_image

回答 6

导入图片

def fig2img(fig):“”“ @brief将Matplotlib图形转换为RGBA格式的PIL图像并返回@param图matplotlib图形@返回Python图像库(PIL)图像”“”#将图形像素图放入一个numpy数组buf = fig2data(fig)w,h,d = buf.shape return Image.frombytes(“ RGBA”,(w,h),buf.tostring())

def fig2data(fig):“”“ @brief将Matplotlib图形转换为具有RGBA通道的4D numpy数组,然后将其返回@p​​aram图matplotlib图形@返回RGBA值的numpy 3D数组”“”#绘制渲染器图。 canvas.draw()

# Get the RGBA buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.fromstring ( fig.canvas.tostring_argb(), dtype=np.uint8 )
buf.shape = ( w, h, 4 )

# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll ( buf, 3, axis = 2 )
return buf

def rgba2rgb(img,c =(0,0,0),path =’foo.jpg’,is_already_saved = False,if_load = True):如果不是is_already_saved:background = Image.new(“ RGB”,img.size, c)background.paste(img,mask = img.split()[3])#3是Alpha通道

    background.save(path, 'JPEG', quality=100)   
    is_already_saved = True
if if_load:
    if is_already_saved:
        im = Image.open(path)
        return np.array(im)
    else:
        raise ValueError('No image to load.')

import Image

def fig2img ( fig ): “”” @brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it @param fig a matplotlib figure @return a Python Imaging Library ( PIL ) image “”” # put the figure pixmap into a numpy array buf = fig2data ( fig ) w, h, d = buf.shape return Image.frombytes( “RGBA”, ( w ,h ), buf.tostring( ) )

def fig2data ( fig ): “”” @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig a matplotlib figure @return a numpy 3D array of RGBA values “”” # draw the renderer fig.canvas.draw ( )

# Get the RGBA buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.fromstring ( fig.canvas.tostring_argb(), dtype=np.uint8 )
buf.shape = ( w, h, 4 )

# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll ( buf, 3, axis = 2 )
return buf

def rgba2rgb(img, c=(0, 0, 0), path=’foo.jpg’, is_already_saved=False, if_load=True): if not is_already_saved: background = Image.new(“RGB”, img.size, c) background.paste(img, mask=img.split()[3]) # 3 is the alpha channel

    background.save(path, 'JPEG', quality=100)   
    is_already_saved = True
if if_load:
    if is_already_saved:
        im = Image.open(path)
        return np.array(im)
    else:
        raise ValueError('No image to load.')

如何在ipython笔记本中显示PIL图像

问题:如何在ipython笔记本中显示PIL图像

这是我的代码

from PIL import Image
pil_im = Image.open('data/empire.jpg')

我想对其进行一些图像处理,然后在屏幕上显示它。
我在python笔记本中显示PIL图像时遇到问题。

我努力了:

print pil_im

而只是

pil_im

但是两者都给我:

<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=569x800 at 0x10ECA0710>

This is my code

from PIL import Image
pil_im = Image.open('data/empire.jpg')

I would like to do some image manipulation on it, and then show it on screen.
I am having problem with showing PIL Image in python notebook.

I have tried:

print pil_im

And just

pil_im

But both just give me:

<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=569x800 at 0x10ECA0710>

回答 0

您可以使用IPython Module: display加载图像。您可以从Doc阅读更多内容。

from IPython.display import Image 
pil_img = Image(filename='data/empire.jpg')
display(pil_img)

更新

由于OP的要求是使用PIL,如果要显示嵌入式图像,也可以使用matplotlib.pyplot.imshownumpy.asarray例如:

from matplotlib.pyplot import imshow
import numpy as np
from PIL import Image

%matplotlib inline
pil_im = Image.open('data/empire.jpg', 'r')
imshow(np.asarray(pil_im))

如果只需要预览而不是内联,则可以这样使用show

pil_im = Image.open('data/empire.jpg', 'r')
pil_im.show()

You can use IPython’s Module: display to load the image. You can read more from the Doc.

from IPython.display import Image 
pil_img = Image(filename='data/empire.jpg')
display(pil_img)

updated

As OP’s requirement is to use PIL, if you want to show inline image, you can use matplotlib.pyplot.imshow with numpy.asarray like this too:

from matplotlib.pyplot import imshow
import numpy as np
from PIL import Image

%matplotlib inline
pil_im = Image.open('data/empire.jpg', 'r')
imshow(np.asarray(pil_im))

If you only require a preview rather than an inline, you may just use show like this:

pil_im = Image.open('data/empire.jpg', 'r')
pil_im.show()

回答 1

使用IPython显示器在笔记本中渲染PIL图像。

from PIL import Image               # to load images
from IPython.display import display # to display images

pil_im = Image.open('path/to/image.jpg')
display(pil_im)

Use IPython display to render PIL images in a notebook.

from PIL import Image               # to load images
from IPython.display import display # to display images

pil_im = Image.open('path/to/image.jpg')
display(pil_im)

回答 2

我发现这有效

# source: http://nbviewer.ipython.org/gist/deeplook/5162445
from io import BytesIO

from IPython import display
from PIL import Image


def display_pil_image(im):
   """Displayhook function for PIL Images, rendered as PNG."""

   b = BytesIO()
   im.save(b, format='png')
   data = b.getvalue()

   ip_img = display.Image(data=data, format='png', embed=True)
   return ip_img._repr_png_()


# register display func with PNG formatter:
png_formatter = get_ipython().display_formatter.formatters['image/png']
dpi = png_formatter.for_type(Image.Image, display_pil_image)

在此之后,我可以做:

pil_im

但这必须是单元格中的最后一行,print之后没有

I found that this is working

# source: http://nbviewer.ipython.org/gist/deeplook/5162445
from io import BytesIO

from IPython import display
from PIL import Image


def display_pil_image(im):
   """Displayhook function for PIL Images, rendered as PNG."""

   b = BytesIO()
   im.save(b, format='png')
   data = b.getvalue()

   ip_img = display.Image(data=data, format='png', embed=True)
   return ip_img._repr_png_()


# register display func with PNG formatter:
png_formatter = get_ipython().display_formatter.formatters['image/png']
dpi = png_formatter.for_type(Image.Image, display_pil_image)

After this I can just do:

pil_im

But this must be last line in cell, with no print after it


回答 3

案例python3

from PIL import Image
from IPython.display import HTML
from io import BytesIO
from base64 import b64encode

pil_im = Image.open('data/empire.jpg')
b = BytesIO()  
pil_im.save(b, format='png')
HTML("<img src='data:image/png;base64,{0}'/>".format(b64encode(b.getvalue()).decode('utf-8')))

case python3

from PIL import Image
from IPython.display import HTML
from io import BytesIO
from base64 import b64encode

pil_im = Image.open('data/empire.jpg')
b = BytesIO()  
pil_im.save(b, format='png')
HTML("<img src='data:image/png;base64,{0}'/>".format(b64encode(b.getvalue()).decode('utf-8')))

回答 4

使用枕头在jupyter中简单得多。

from PIL import Image
image0=Image.open('image.png')
image0

much simpler in jupyter using pillow.

from PIL import Image
image0=Image.open('image.png')
image0

回答 5

您可以使用PIL包中的Image类打开图像,并直接使用plt.imshow显示它。

# First import libraries.
from PIL import Image
import matplotlib.pyplot as plt

# The folliwing line is useful in Jupyter notebook
%matplotlib inline

# Open your file image using the path
img = Image.open(<path_to_image>)

# Since plt knows how to handle instance of the Image class, just input your loaded image to imshow method
plt.imshow(img)

You can open an image using the Image class from the package PIL and display it with plt.imshow directly.

# First import libraries.
from PIL import Image
import matplotlib.pyplot as plt

# The folliwing line is useful in Jupyter notebook
%matplotlib inline

# Open your file image using the path
img = Image.open(<path_to_image>)

# Since plt knows how to handle instance of the Image class, just input your loaded image to imshow method
plt.imshow(img)

回答 6

如果使用pylab扩展,则可以将图像转换为numpy数组,并使用matplotlib的imshow。

%pylab # only if not started with the --pylab option
imshow(array(pil_im))

编辑:如评论中所述,不推荐使用pylab模块,因此请改用matplotlib magic并显式导入函数:

%matplotlib
from matplotlib.pyplot import imshow 
imshow(array(pil_im))

If you are using the pylab extension, you could convert the image to a numpy array and use matplotlib’s imshow.

%pylab # only if not started with the --pylab option
imshow(array(pil_im))

EDIT: As mentioned in the comments, the pylab module is deprecated, so use the matplotlib magic instead and import the function explicitly:

%matplotlib
from matplotlib.pyplot import imshow 
imshow(array(pil_im))

回答 7

根据其他答案和我的尝试,最好的经验是,首先安装,枕头和scipy,然后在jupyter笔记本上使用以下起始代码:

%matplotlib inline
from matplotlib.pyplot import imshow
from scipy.misc import imread

imshow(imread('image.jpg', 1))

Based on other answers and my tries, best experience would be first installing, pillow and scipy, then using the following starting code on your jupyter notebook:

%matplotlib inline
from matplotlib.pyplot import imshow
from scipy.misc import imread

imshow(imread('image.jpg', 1))

回答 8

使用标准numpy,matplotlib和PIL的更干净的Python3版本。合并从URL打开的答案。

import matplotlib.pyplot as plt
from PIL import Image
import numpy as np

pil_im = Image.open('image.jpg')
## Uncomment to open from URL
#import requests
#r = requests.get('https://www.vegvesen.no/public/webkamera/kamera?id=131206')
#pil_im = Image.open(BytesIO(r.content))
im_array = np.asarray(pil_im)
plt.imshow(im_array)
plt.show()

A cleaner Python3 version that use standard numpy, matplotlib and PIL. Merging the answer for opening from URL.

import matplotlib.pyplot as plt
from PIL import Image
import numpy as np

pil_im = Image.open('image.jpg')
## Uncomment to open from URL
#import requests
#r = requests.get('https://www.vegvesen.no/public/webkamera/kamera?id=131206')
#pil_im = Image.open(BytesIO(r.content))
im_array = np.asarray(pil_im)
plt.imshow(im_array)
plt.show()

回答 9

我建议以下安装时不要显示任何图像show img.show()(来自PIL导入图像)

$ sudo apt-get install imagemagick

I suggest following installation by no image show img.show() (from PIL import Image)

$ sudo apt-get install imagemagick


回答 10

只需使用

from IPython.display import Image 
Image('image.png')

Just use

from IPython.display import Image 
Image('image.png')

将图像从PIL转换为openCV格式

问题:将图像从PIL转换为openCV格式

我正在尝试将图像从转换PILOpenCV格式。我正在使用OpenCV 2.4.3。这是到目前为止我一直尝试的。

>>> from PIL import Image
>>> import cv2 as cv
>>> pimg = Image.open('D:\\traffic.jpg')                           #PIL Image
>>> cimg = cv.cv.CreateImageHeader(pimg.size,cv.IPL_DEPTH_8U,3)    #CV Image
>>> cv.cv.SetData(cimg,pimg.tostring())
>>> cv.cv.NamedWindow('cimg')
>>> cv.cv.ShowImage('cimg',cimg)
>>> cv.cv.WaitKey()

但我认为图像未转换为CV格式。窗口向我显示了一个大的棕色图像。将图像从转换PILCV格式时,我在哪里出错?

另外,为什么我需要输入cv.cv访问功能?

I’m trying to convert image from PIL to OpenCV format. I’m using OpenCV 2.4.3. here is what I’ve attempted till now.

>>> from PIL import Image
>>> import cv2 as cv
>>> pimg = Image.open('D:\\traffic.jpg')                           #PIL Image
>>> cimg = cv.cv.CreateImageHeader(pimg.size,cv.IPL_DEPTH_8U,3)    #CV Image
>>> cv.cv.SetData(cimg,pimg.tostring())
>>> cv.cv.NamedWindow('cimg')
>>> cv.cv.ShowImage('cimg',cimg)
>>> cv.cv.WaitKey()

But I think the image is not getting converted to CV format. The Window shows me a large brown image. Where am I going wrong in Converting image from PIL to CV format?

Also , why do i need to type cv.cv to access functions?


回答 0

用这个:

pil_image = PIL.Image.open('Image.jpg').convert('RGB') 
open_cv_image = numpy.array(pil_image) 
# Convert RGB to BGR 
open_cv_image = open_cv_image[:, :, ::-1].copy() 

use this:

pil_image = PIL.Image.open('Image.jpg').convert('RGB') 
open_cv_image = numpy.array(pil_image) 
# Convert RGB to BGR 
open_cv_image = open_cv_image[:, :, ::-1].copy() 

回答 1

这是我能找到的最短版本,可以保存/隐藏额外的转换:

pil_image = PIL.Image.open('image.jpg')
opencvImage = cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR)

如果从URL读取文件:

import cStringIO
import urllib
file = cStringIO.StringIO(urllib.urlopen(r'http://stackoverflow.com/a_nice_image.jpg').read())
pil_image = PIL.Image.open(file)
opencvImage = cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR)

This is the shortest version I could find,saving/hiding an extra conversion:

pil_image = PIL.Image.open('image.jpg')
opencvImage = cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR)

If reading a file from a URL:

import cStringIO
import urllib
file = cStringIO.StringIO(urllib.urlopen(r'http://stackoverflow.com/a_nice_image.jpg').read())
pil_image = PIL.Image.open(file)
opencvImage = cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2BGR)

如何使用PIL将PNG图片写入字符串?

问题:如何使用PIL将PNG图片写入字符串?

我已经使用PIL生成了图像。如何将其保存到内存中的字符串中?该Image.save()方法需要一个文件。

我想将几个这样的图像存储在字典中。

I have generated an image using PIL. How can I save it to a string in memory? The Image.save() method requires a file.

I’d like to have several such images stored in dictionary.


回答 0

您可以使用BytesIO该类来获取行为类似于文件的字符串的包装器。该BytesIO对象提供与文件相同的接口,但仅将内容保存在内存中:

import io

with io.BytesIO() as output:
    image.save(output, format="GIF")
    contents = output.getvalue()

您必须使用format参数明确指定输出格式,否则PIL在尝试自动检测到它时会引发错误。

如果从文件加载图像,则图像的format参数包含原始文件格式,因此在这种情况下,您可以使用format=image.format

在引入io模块之前的旧Python 2版本中,您会改用该StringIO模块。

You can use the BytesIO class to get a wrapper around strings that behaves like a file. The BytesIO object provides the same interface as a file, but saves the contents just in memory:

import io

with io.BytesIO() as output:
    image.save(output, format="GIF")
    contents = output.getvalue()

You have to explicitly specify the output format with the format parameter, otherwise PIL will raise an error when trying to automatically detect it.

If you loaded the image from a file it has a format parameter that contains the original file format, so in this case you can use format=image.format.

In old Python 2 versions before introduction of the io module you would have used the StringIO module instead.


回答 1

对于Python3,需要使用BytesIO:

from io import BytesIO
from PIL import Image, ImageDraw

image = Image.new("RGB", (300, 50))
draw = ImageDraw.Draw(image)
draw.text((0, 0), "This text is drawn on image")

byte_io = BytesIO()

image.save(byte_io, 'PNG')

了解更多:http : //fadeit.dk/blog/post/python3-flask-pil-in-memory-image

For Python3 it is required to use BytesIO:

from io import BytesIO
from PIL import Image, ImageDraw

image = Image.new("RGB", (300, 50))
draw = ImageDraw.Draw(image)
draw.text((0, 0), "This text is drawn on image")

byte_io = BytesIO()

image.save(byte_io, 'PNG')

Read more: http://fadeit.dk/blog/post/python3-flask-pil-in-memory-image


回答 2

某物的解决方案对我不起作用,
因为在…

Imaging / PIL / Image.pyc第1423行->提高KeyError(ext)#未知扩展名

它试图从文件名的扩展名中检测格式,这在StringIO情况下不存在

您可以通过在参数中自行设置格式来绕过格式检测

import StringIO
output = StringIO.StringIO()
format = 'PNG' # or 'JPEG' or whatever you want
image.save(output, format)
contents = output.getvalue()
output.close()

sth’s solution didn’t work for me
because in …

Imaging/PIL/Image.pyc line 1423 -> raise KeyError(ext) # unknown extension

It was trying to detect the format from the extension in the filename , which doesn’t exist in StringIO case

You can bypass the format detection by setting the format yourself in a parameter

import StringIO
output = StringIO.StringIO()
format = 'PNG' # or 'JPEG' or whatever you want
image.save(output, format)
contents = output.getvalue()
output.close()

回答 3

save()可以采用类似文件的对象以及路径,因此您可以使用内存缓冲区,例如StringIO

buf = StringIO.StringIO()
im.save(buf, format='JPEG')
jpeg = buf.getvalue()

save() can take a file-like object as well as a path, so you can use an in-memory buffer like a StringIO:

buf = StringIO.StringIO()
im.save(buf, format='JPEG')
jpeg = buf.getvalue()

回答 4

使用最新版本(自2017年中开始,Python 3.5和Pillow 4.0):

StringIO似乎不再像以前那样工作。BytesIO类是处理此问题的正确方法。Pillow的save函数期望将字符串作为第一个参数,并且令人惊讶地没有这样的StringIO。以下内容与较早的StringIO解决方案相似,但是使用了BytesIO。

from io import BytesIO
from PIL import Image

image = Image.open("a_file.png")
faux_file = BytesIO()
image.save(faux_file, 'png')

With modern (as of mid-2017 Python 3.5 and Pillow 4.0):

StringIO no longer seems to work as it used to. The BytesIO class is the proper way to handle this. Pillow’s save function expects a string as the first argument, and surprisingly doesn’t see StringIO as such. The following is similar to older StringIO solutions, but with BytesIO in its place.

from io import BytesIO
from PIL import Image

image = Image.open("a_file.png")
faux_file = BytesIO()
image.save(faux_file, 'png')

回答 5

当您说“我希望在字典中存储此类图像的数量”时,尚不清楚这是否是内存结构。

您无需执行任何操作即可将图像存储在内存中。只需将image对象保留在字典中即可。

如果要将字典写入文件,则可能需要查看 im.tostring()方法和Image.fromstring()函数

http://effbot.org/imagingbook/image.htm

im.tostring()=>字符串

使用标准的“原始”编码器返回包含像素数据的字符串。

Image.fromstring(模式,大小,数据)=>图片

使用标准的“原始”解码器根据字符串中的像素数据创建图像存储器。

仅当交换文件时,“格式”(.jpeg,.png等)才在磁盘上起作用。如果您不交换文件,则格式无关紧要。

When you say “I’d like to have number of such images stored in dictionary”, it’s not clear if this is an in-memory structure or not.

You don’t need to do any of this to meek an image in memory. Just keep the image object in your dictionary.

If you’re going to write your dictionary to a file, you might want to look at im.tostring() method and the Image.fromstring() function

http://effbot.org/imagingbook/image.htm

im.tostring() => string

Returns a string containing pixel data, using the standard “raw” encoder.

Image.fromstring(mode, size, data) => image

Creates an image memory from pixel data in a string, using the standard “raw” decoder.

The “format” (.jpeg, .png, etc.) only matters on disk when you are exchanging the files. If you’re not exchanging files, format doesn’t matter.