问题:如何在Flask-SQLAlchemy应用中执行原始SQL
如何在SQLAlchemy中执行原始SQL?
我有一个在烧瓶上运行的python Web应用程序,并通过SQLAlchemy连接到数据库。
我需要一种运行原始SQL的方法。该查询涉及多个表联接以及内联视图。
我试过了:
connection = db.session.connection()
connection.execute( <sql here> )
但是我不断收到网关错误。
How do you execute raw SQL in SQLAlchemy?
I have a python web app that runs on flask and interfaces to the database through SQLAlchemy.
I need a way to run the raw SQL. The query involves multiple table joins along with Inline views.
I’ve tried:
connection = db.session.connection()
connection.execute( <sql here> )
But I keep getting gateway errors.
回答 0
你有没有尝试过:
result = db.engine.execute("<sql here>")
要么:
from sqlalchemy import text
sql = text('select name from penguins')
result = db.engine.execute(sql)
names = [row[0] for row in result]
print names
Have you tried:
result = db.engine.execute("<sql here>")
or:
from sqlalchemy import text
sql = text('select name from penguins')
result = db.engine.execute(sql)
names = [row[0] for row in result]
print names
回答 1
SQL Alchemy会话对象具有自己的execute
方法:
result = db.session.execute('SELECT * FROM my_table WHERE my_column = :val', {'val': 5})
您的所有应用程序查询都应通过会话对象,无论它们是否是原始SQL。这样可以确保由事务适当地管理查询,该事务允许将同一请求中的多个查询作为一个单元提交或回滚。使用引擎或连接进行事务处理将使您面临更大的隐患,即可能很难检测到可能导致数据损坏的错误的风险。每个请求应仅与一个事务相关联,并且使用db.session
可以确保您的应用程序是这种情况。
另请注意,它execute
是为参数化查询设计的。使用:val
示例中的参数作为查询的任何输入,以保护自己免受SQL注入攻击。您可以通过传递a dict
作为第二个参数来提供这些参数的值,其中每个键都是在查询中显示的参数名称。参数本身的确切语法可能会有所不同,具体取决于您的数据库,但是所有主要的关系数据库都以某种形式支持它们。
假设这是一个SELECT
查询,它将返回一个可迭代的RowProxy
对象。
您可以使用多种技术访问各个列:
for r in result:
print(r[0]) # Access by positional index
print(r['my_column']) # Access by column name as a string
r_dict = dict(r.items()) # convert to dict keyed by column names
就个人而言,我更喜欢将结果转换为namedtuple
s:
from collections import namedtuple
Record = namedtuple('Record', result.keys())
records = [Record(*r) for r in result.fetchall()]
for r in records:
print(r.my_column)
print(r)
如果您不使用Flask-SQLAlchemy扩展,您仍然可以轻松使用会话:
import sqlalchemy
from sqlalchemy.orm import sessionmaker, scoped_session
engine = sqlalchemy.create_engine('my connection string')
Session = scoped_session(sessionmaker(bind=engine))
s = Session()
result = s.execute('SELECT * FROM my_table WHERE my_column = :val', {'val': 5})
SQL Alchemy session objects have their own execute
method:
result = db.session.execute('SELECT * FROM my_table WHERE my_column = :val', {'val': 5})
All your application queries should be going through a session object, whether they’re raw SQL or not. This ensures that the queries are properly managed by a transaction, which allows multiple queries in the same request to be committed or rolled back as a single unit. Going outside the transaction using the engine or the connection puts you at much greater risk of subtle, possibly hard to detect bugs that can leave you with corrupted data. Each request should be associated with only one transaction, and using db.session
will ensure this is the case for your application.
Also take note that execute
is designed for parameterized queries. Use parameters, like :val
in the example, for any inputs to the query to protect yourself from SQL injection attacks. You can provide the value for these parameters by passing a dict
as the second argument, where each key is the name of the parameter as it appears in the query. The exact syntax of the parameter itself may be different depending on your database, but all of the major relational databases support them in some form.
Assuming it’s a SELECT
query, this will return an iterable of RowProxy
objects.
You can access individual columns with a variety of techniques:
for r in result:
print(r[0]) # Access by positional index
print(r['my_column']) # Access by column name as a string
r_dict = dict(r.items()) # convert to dict keyed by column names
Personally, I prefer to convert the results into namedtuple
s:
from collections import namedtuple
Record = namedtuple('Record', result.keys())
records = [Record(*r) for r in result.fetchall()]
for r in records:
print(r.my_column)
print(r)
If you’re not using the Flask-SQLAlchemy extension, you can still easily use a session:
import sqlalchemy
from sqlalchemy.orm import sessionmaker, scoped_session
engine = sqlalchemy.create_engine('my connection string')
Session = scoped_session(sessionmaker(bind=engine))
s = Session()
result = s.execute('SELECT * FROM my_table WHERE my_column = :val', {'val': 5})
回答 2
docs:SQL表达式语言教程-使用文本
例:
from sqlalchemy.sql import text
connection = engine.connect()
# recommended
cmd = 'select * from Employees where EmployeeGroup = :group'
employeeGroup = 'Staff'
employees = connection.execute(text(cmd), group = employeeGroup)
# or - wee more difficult to interpret the command
employeeGroup = 'Staff'
employees = connection.execute(
text('select * from Employees where EmployeeGroup = :group'),
group = employeeGroup)
# or - notice the requirement to quote 'Staff'
employees = connection.execute(
text("select * from Employees where EmployeeGroup = 'Staff'"))
for employee in employees: logger.debug(employee)
# output
(0, 'Tim', 'Gurra', 'Staff', '991-509-9284')
(1, 'Jim', 'Carey', 'Staff', '832-252-1910')
(2, 'Lee', 'Asher', 'Staff', '897-747-1564')
(3, 'Ben', 'Hayes', 'Staff', '584-255-2631')
docs: SQL Expression Language Tutorial – Using Text
example:
from sqlalchemy.sql import text
connection = engine.connect()
# recommended
cmd = 'select * from Employees where EmployeeGroup = :group'
employeeGroup = 'Staff'
employees = connection.execute(text(cmd), group = employeeGroup)
# or - wee more difficult to interpret the command
employeeGroup = 'Staff'
employees = connection.execute(
text('select * from Employees where EmployeeGroup = :group'),
group = employeeGroup)
# or - notice the requirement to quote 'Staff'
employees = connection.execute(
text("select * from Employees where EmployeeGroup = 'Staff'"))
for employee in employees: logger.debug(employee)
# output
(0, 'Tim', 'Gurra', 'Staff', '991-509-9284')
(1, 'Jim', 'Carey', 'Staff', '832-252-1910')
(2, 'Lee', 'Asher', 'Staff', '897-747-1564')
(3, 'Ben', 'Hayes', 'Staff', '584-255-2631')
回答 3
你可以使用SELECT SQL查询的结果from_statement()
,并text()
如图所示这里。您不必以这种方式处理元组。作为User
具有表名的类的示例,users
您可以尝试,
from sqlalchemy.sql import text
.
.
.
user = session.query(User).from_statement(
text("SELECT * FROM users where name=:name")).\
params(name='ed').all()
return user
You can get the results of SELECT SQL queries using from_statement()
and text()
as shown here. You don’t have to deal with tuples this way. As an example for a class User
having the table name users
you can try,
from sqlalchemy.sql import text
user = session.query(User).from_statement(
text("""SELECT * FROM users where name=:name""")
).params(name="ed").all()
return user
回答 4
result = db.engine.execute(text("<sql here>"))
<sql here>
除非您处于autocommit
模式,否则执行但不提交。因此,插入和更新不会反映在数据库中。
要在更改后提交,请执行
result = db.engine.execute(text("<sql here>").execution_options(autocommit=True))
result = db.engine.execute(text("<sql here>"))
executes the <sql here>
but doesn’t commit it unless you’re on autocommit
mode. So, inserts and updates wouldn’t reflect in the database.
To commit after the changes, do
result = db.engine.execute(text("<sql here>").execution_options(autocommit=True))
回答 5
这是如何从Flask Shell运行SQL查询的简化答案
首先,映射您的模块(如果您的模块/应用程序是principal文件夹中的manage.py,并且您在UNIX操作系统中),请运行:
export FLASK_APP=manage
运行烧瓶壳
flask shell
导入我们需要的::
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy(app)
from sqlalchemy import text
运行查询:
result = db.engine.execute(text("<sql here>").execution_options(autocommit=True))
这将使用具有应用程序的当前数据库连接。
This is a simplified answer of how to run SQL query from Flask Shell
First, map your module (if your module/app is manage.py in the principal folder and you are in a UNIX Operating system), run:
export FLASK_APP=manage
Run Flask shell
flask shell
Import what we need::
from flask import Flask
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy(app)
from sqlalchemy import text
Run your query:
result = db.engine.execute(text("<sql here>").execution_options(autocommit=True))
This use the currently database connection which has the application.
回答 6
您是否尝试过按照文档connection.execute(text( <sql here> ), <bind params here> )
所述使用和绑定参数?这可以帮助解决许多参数格式设置和性能问题。也许网关错误是超时?绑定参数往往会使复杂的查询执行得更快。
Have you tried using connection.execute(text( <sql here> ), <bind params here> )
and bind parameters as described in the docs? This can help solve many parameter formatting and performance problems. Maybe the gateway error is a timeout? Bind parameters tend to make complex queries execute substantially faster.
回答 7
如果你想避免的元组,另一种方式是通过调用first
,one
或all
方法:
query = db.engine.execute("SELECT * FROM blogs "
"WHERE id = 1 ")
assert query.first().name == "Welcome to my blog"
If you want to avoid tuples, another way is by calling the first
, one
or all
methods:
query = db.engine.execute("SELECT * FROM blogs "
"WHERE id = 1 ")
assert query.first().name == "Welcome to my blog"