问题:如何使用NumPy计算欧几里得距离?

我在3D中有两点:

(xa, ya, za)
(xb, yb, zb)

我想计算距离:

dist = sqrt((xa-xb)^2 + (ya-yb)^2 + (za-zb)^2)

使用NumPy或一般使用Python的最佳方法是什么?我有:

import numpy
a = numpy.array((xa ,ya, za))
b = numpy.array((xb, yb, zb))

I have two points in 3D:

(xa, ya, za)
(xb, yb, zb)

And I want to calculate the distance:

dist = sqrt((xa-xb)^2 + (ya-yb)^2 + (za-zb)^2)

What’s the best way to do this with NumPy, or with Python in general? I have:

import numpy
a = numpy.array((xa ,ya, za))
b = numpy.array((xb, yb, zb))

回答 0

用途numpy.linalg.norm

dist = numpy.linalg.norm(a-b)

您可以在“数据挖掘导论”中找到其背后的理论

这是有效的,因为欧几里得距离l2范数,并且numpy.linalg.norm 中ord参数的默认值为2。

enter image description here

Use numpy.linalg.norm:

dist = numpy.linalg.norm(a-b)

You can find the theory behind this in Introduction to Data Mining

This works because Euclidean distance is l2 norm and the default value of ord parameter in numpy.linalg.norm is 2.

enter image description here


回答 1

SciPy中有一个功能。称为欧几里得

例:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)

There’s a function for that in SciPy. It’s called Euclidean.

Example:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)

回答 2

对于有兴趣一次计算多个距离的任何人,我已经使用perfplot(我的一个小项目)进行了一些比较。

第一个建议是组织数据,使数组具有维(3, n)(并且显然是C连续的)。如果添加在连续的第一个维度发生,事情是更快,它没有太大的关系,如果您使用sqrt-sumaxis=0linalg.normaxis=0,或

a_min_b = a - b
numpy.sqrt(numpy.einsum('ij,ij->j', a_min_b, a_min_b))

这是最快的变体。(实际上也只适用于一行。)

您在第二个轴上进行汇总的变体axis=1都慢得多。

在此处输入图片说明


复制剧情的代码:

import numpy
import perfplot
from scipy.spatial import distance


def linalg_norm(data):
    a, b = data[0]
    return numpy.linalg.norm(a - b, axis=1)


def linalg_norm_T(data):
    a, b = data[1]
    return numpy.linalg.norm(a - b, axis=0)


def sqrt_sum(data):
    a, b = data[0]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=1))


def sqrt_sum_T(data):
    a, b = data[1]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=0))


def scipy_distance(data):
    a, b = data[0]
    return list(map(distance.euclidean, a, b))


def sqrt_einsum(data):
    a, b = data[0]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->i", a_min_b, a_min_b))


def sqrt_einsum_T(data):
    a, b = data[1]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->j", a_min_b, a_min_b))


def setup(n):
    a = numpy.random.rand(n, 3)
    b = numpy.random.rand(n, 3)
    out0 = numpy.array([a, b])
    out1 = numpy.array([a.T, b.T])
    return out0, out1


perfplot.save(
    "norm.png",
    setup=setup,
    n_range=[2 ** k for k in range(22)],
    kernels=[
        linalg_norm,
        linalg_norm_T,
        scipy_distance,
        sqrt_sum,
        sqrt_sum_T,
        sqrt_einsum,
        sqrt_einsum_T,
    ],
    logx=True,
    logy=True,
    xlabel="len(x), len(y)",
)

For anyone interested in computing multiple distances at once, I’ve done a little comparison using perfplot (a small project of mine).

The first advice is to organize your data such that the arrays have dimension (3, n) (and are C-contiguous obviously). If adding happens in the contiguous first dimension, things are faster, and it doesn’t matter too much if you use sqrt-sum with axis=0, linalg.norm with axis=0, or

a_min_b = a - b
numpy.sqrt(numpy.einsum('ij,ij->j', a_min_b, a_min_b))

which is, by a slight margin, the fastest variant. (That actually holds true for just one row as well.)

The variants where you sum up over the second axis, axis=1, are all substantially slower.

enter image description here


Code to reproduce the plot:

import numpy
import perfplot
from scipy.spatial import distance


def linalg_norm(data):
    a, b = data[0]
    return numpy.linalg.norm(a - b, axis=1)


def linalg_norm_T(data):
    a, b = data[1]
    return numpy.linalg.norm(a - b, axis=0)


def sqrt_sum(data):
    a, b = data[0]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=1))


def sqrt_sum_T(data):
    a, b = data[1]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=0))


def scipy_distance(data):
    a, b = data[0]
    return list(map(distance.euclidean, a, b))


def sqrt_einsum(data):
    a, b = data[0]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->i", a_min_b, a_min_b))


def sqrt_einsum_T(data):
    a, b = data[1]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->j", a_min_b, a_min_b))


def setup(n):
    a = numpy.random.rand(n, 3)
    b = numpy.random.rand(n, 3)
    out0 = numpy.array([a, b])
    out1 = numpy.array([a.T, b.T])
    return out0, out1


perfplot.save(
    "norm.png",
    setup=setup,
    n_range=[2 ** k for k in range(22)],
    kernels=[
        linalg_norm,
        linalg_norm_T,
        scipy_distance,
        sqrt_sum,
        sqrt_sum_T,
        sqrt_einsum,
        sqrt_einsum_T,
    ],
    logx=True,
    logy=True,
    xlabel="len(x), len(y)",
)

回答 3

我想用各种性能说明来解释简单答案。np.linalg.norm可能会做比您需要的更多的工作:

dist = numpy.linalg.norm(a-b)

首先-该功能的目的是工作在一个列表,并返回所有的值,例如到距离比较pA的点的集合sP

sP = set(points)
pA = point
distances = np.linalg.norm(sP - pA, ord=2, axis=1.)  # 'distances' is a list

记住几件事:

  • Python函数调用非常昂贵。
  • [常规] Python不缓存名称查找。

所以

def distance(pointA, pointB):
    dist = np.linalg.norm(pointA - pointB)
    return dist

没有看起来那么天真。

>>> dis.dis(distance)
  2           0 LOAD_GLOBAL              0 (np)
              2 LOAD_ATTR                1 (linalg)
              4 LOAD_ATTR                2 (norm)
              6 LOAD_FAST                0 (pointA)
              8 LOAD_FAST                1 (pointB)
             10 BINARY_SUBTRACT
             12 CALL_FUNCTION            1
             14 STORE_FAST               2 (dist)

  3          16 LOAD_FAST                2 (dist)
             18 RETURN_VALUE

首先,每次调用时,我们都必须对“ np”进行全局查找,对“ linalg”进行有范围的查找,对“ norm”进行有范围的查找,以及仅调用的开销该函数就相当于数十个python。说明。

最后,我们浪费了两个操作来存储结果并重新加载以返回结果…

改进的第一步:加快查找速度,跳过商店

def distance(pointA, pointB, _norm=np.linalg.norm):
    return _norm(pointA - pointB)

我们得到了更加简化:

>>> dis.dis(distance)
  2           0 LOAD_FAST                2 (_norm)
              2 LOAD_FAST                0 (pointA)
              4 LOAD_FAST                1 (pointB)
              6 BINARY_SUBTRACT
              8 CALL_FUNCTION            1
             10 RETURN_VALUE

但是,函数调用开销仍然需要完成一些工作。而且,您需要进行基准测试以确定您自己做数学是否会更好:

def distance(pointA, pointB):
    return (
        ((pointA.x - pointB.x) ** 2) +
        ((pointA.y - pointB.y) ** 2) +
        ((pointA.z - pointB.z) ** 2)
    ) ** 0.5  # fast sqrt

在某些平台上,**0.5速度比math.sqrt。你的旅费可能会改变。

****高级性能说明。

为什么要计算距离?如果唯一的目的是显示它,

 print("The target is %.2fm away" % (distance(a, b)))

向前走。但是,如果您要比较距离,进行范围检查等,我想添加一些有用的性能观察。

让我们采取两种情况:按距离排序或将列表筛选为满足范围约束的项目。

# Ultra naive implementations. Hold onto your hat.

def sort_things_by_distance(origin, things):
    return things.sort(key=lambda thing: distance(origin, thing))

def in_range(origin, range, things):
    things_in_range = []
    for thing in things:
        if distance(origin, thing) <= range:
            things_in_range.append(thing)

我们需要记住的第一件事是我们正在使用毕达哥拉斯来计算距离(dist = sqrt(x^2 + y^2 + z^2)),因此我们进行了很多sqrt通话。数学101:

dist = root ( x^2 + y^2 + z^2 )
:.
dist^2 = x^2 + y^2 + z^2
and
sq(N) < sq(M) iff M > N
and
sq(N) > sq(M) iff N > M
and
sq(N) = sq(M) iff N == M

简而言之:直到我们实际需要以X而不是X ^ 2为单位的距离,我们才能消除计算中最困难的部分。

# Still naive, but much faster.

def distance_sq(left, right):
    """ Returns the square of the distance between left and right. """
    return (
        ((left.x - right.x) ** 2) +
        ((left.y - right.y) ** 2) +
        ((left.z - right.z) ** 2)
    )

def sort_things_by_distance(origin, things):
    return things.sort(key=lambda thing: distance_sq(origin, thing))

def in_range(origin, range, things):
    things_in_range = []

    # Remember that sqrt(N)**2 == N, so if we square
    # range, we don't need to root the distances.
    range_sq = range**2

    for thing in things:
        if distance_sq(origin, thing) <= range_sq:
            things_in_range.append(thing)

太好了,这两个函数不再需要任何昂贵的平方根。这样会更快。我们还可以通过将in_range转换为生成器来改进它:

def in_range(origin, range, things):
    range_sq = range**2
    yield from (thing for thing in things
                if distance_sq(origin, thing) <= range_sq)

如果您正在执行以下操作,则这尤其有好处:

if any(in_range(origin, max_dist, things)):
    ...

但是,如果接下来要做的事情需要一段距离,

for nearby in in_range(origin, walking_distance, hotdog_stands):
    print("%s %.2fm" % (nearby.name, distance(origin, nearby)))

考虑产生元组:

def in_range_with_dist_sq(origin, range, things):
    range_sq = range**2
    for thing in things:
        dist_sq = distance_sq(origin, thing)
        if dist_sq <= range_sq: yield (thing, dist_sq)

如果您可以进行范围检查(“找到在X附近且在Y Nm之内的东西”,因为您不必再​​次计算距离),这将特别有用。

但是,如果我们要搜索的清单很大,那things又有很多不值得考虑的地方怎么办?

实际上有一个非常简单的优化:

def in_range_all_the_things(origin, range, things):
    range_sq = range**2
    for thing in things:
        dist_sq = (origin.x - thing.x) ** 2
        if dist_sq <= range_sq:
            dist_sq += (origin.y - thing.y) ** 2
            if dist_sq <= range_sq:
                dist_sq += (origin.z - thing.z) ** 2
                if dist_sq <= range_sq:
                    yield thing

这是否有用将取决于“事物”的大小。

def in_range_all_the_things(origin, range, things):
    range_sq = range**2
    if len(things) >= 4096:
        for thing in things:
            dist_sq = (origin.x - thing.x) ** 2
            if dist_sq <= range_sq:
                dist_sq += (origin.y - thing.y) ** 2
                if dist_sq <= range_sq:
                    dist_sq += (origin.z - thing.z) ** 2
                    if dist_sq <= range_sq:
                        yield thing
    elif len(things) > 32:
        for things in things:
            dist_sq = (origin.x - thing.x) ** 2
            if dist_sq <= range_sq:
                dist_sq += (origin.y - thing.y) ** 2 + (origin.z - thing.z) ** 2
                if dist_sq <= range_sq:
                    yield thing
    else:
        ... just calculate distance and range-check it ...

再次考虑产生dist_sq。然后我们的热狗示例变为:

# Chaining generators
info = in_range_with_dist_sq(origin, walking_distance, hotdog_stands)
info = (stand, dist_sq**0.5 for stand, dist_sq in info)
for stand, dist in info:
    print("%s %.2fm" % (stand, dist))

I want to expound on the simple answer with various performance notes. np.linalg.norm will do perhaps more than you need:

dist = numpy.linalg.norm(a-b)

Firstly – this function is designed to work over a list and return all of the values, e.g. to compare the distance from pA to the set of points sP:

sP = set(points)
pA = point
distances = np.linalg.norm(sP - pA, ord=2, axis=1.)  # 'distances' is a list

Remember several things:

  • Python function calls are expensive.
  • [Regular] Python doesn’t cache name lookups.

So

def distance(pointA, pointB):
    dist = np.linalg.norm(pointA - pointB)
    return dist

isn’t as innocent as it looks.

>>> dis.dis(distance)
  2           0 LOAD_GLOBAL              0 (np)
              2 LOAD_ATTR                1 (linalg)
              4 LOAD_ATTR                2 (norm)
              6 LOAD_FAST                0 (pointA)
              8 LOAD_FAST                1 (pointB)
             10 BINARY_SUBTRACT
             12 CALL_FUNCTION            1
             14 STORE_FAST               2 (dist)

  3          16 LOAD_FAST                2 (dist)
             18 RETURN_VALUE

Firstly – every time we call it, we have to do a global lookup for “np”, a scoped lookup for “linalg” and a scoped lookup for “norm”, and the overhead of merely calling the function can equate to dozens of python instructions.

Lastly, we wasted two operations on to store the result and reload it for return…

First pass at improvement: make the lookup faster, skip the store

def distance(pointA, pointB, _norm=np.linalg.norm):
    return _norm(pointA - pointB)

We get the far more streamlined:

>>> dis.dis(distance)
  2           0 LOAD_FAST                2 (_norm)
              2 LOAD_FAST                0 (pointA)
              4 LOAD_FAST                1 (pointB)
              6 BINARY_SUBTRACT
              8 CALL_FUNCTION            1
             10 RETURN_VALUE

The function call overhead still amounts to some work, though. And you’ll want to do benchmarks to determine whether you might be better doing the math yourself:

def distance(pointA, pointB):
    return (
        ((pointA.x - pointB.x) ** 2) +
        ((pointA.y - pointB.y) ** 2) +
        ((pointA.z - pointB.z) ** 2)
    ) ** 0.5  # fast sqrt

On some platforms, **0.5 is faster than math.sqrt. Your mileage may vary.

**** Advanced performance notes.

Why are you calculating distance? If the sole purpose is to display it,

 print("The target is %.2fm away" % (distance(a, b)))

move along. But if you’re comparing distances, doing range checks, etc., I’d like to add some useful performance observations.

Let’s take two cases: sorting by distance or culling a list to items that meet a range constraint.

# Ultra naive implementations. Hold onto your hat.

def sort_things_by_distance(origin, things):
    return things.sort(key=lambda thing: distance(origin, thing))

def in_range(origin, range, things):
    things_in_range = []
    for thing in things:
        if distance(origin, thing) <= range:
            things_in_range.append(thing)

The first thing we need to remember is that we are using Pythagoras to calculate the distance (dist = sqrt(x^2 + y^2 + z^2)) so we’re making a lot of sqrt calls. Math 101:

dist = root ( x^2 + y^2 + z^2 )
:.
dist^2 = x^2 + y^2 + z^2
and
sq(N) < sq(M) iff M > N
and
sq(N) > sq(M) iff N > M
and
sq(N) = sq(M) iff N == M

In short: until we actually require the distance in a unit of X rather than X^2, we can eliminate the hardest part of the calculations.

# Still naive, but much faster.

def distance_sq(left, right):
    """ Returns the square of the distance between left and right. """
    return (
        ((left.x - right.x) ** 2) +
        ((left.y - right.y) ** 2) +
        ((left.z - right.z) ** 2)
    )

def sort_things_by_distance(origin, things):
    return things.sort(key=lambda thing: distance_sq(origin, thing))

def in_range(origin, range, things):
    things_in_range = []

    # Remember that sqrt(N)**2 == N, so if we square
    # range, we don't need to root the distances.
    range_sq = range**2

    for thing in things:
        if distance_sq(origin, thing) <= range_sq:
            things_in_range.append(thing)

Great, both functions no-longer do any expensive square roots. That’ll be much faster. We can also improve in_range by converting it to a generator:

def in_range(origin, range, things):
    range_sq = range**2
    yield from (thing for thing in things
                if distance_sq(origin, thing) <= range_sq)

This especially has benefits if you are doing something like:

if any(in_range(origin, max_dist, things)):
    ...

But if the very next thing you are going to do requires a distance,

for nearby in in_range(origin, walking_distance, hotdog_stands):
    print("%s %.2fm" % (nearby.name, distance(origin, nearby)))

consider yielding tuples:

def in_range_with_dist_sq(origin, range, things):
    range_sq = range**2
    for thing in things:
        dist_sq = distance_sq(origin, thing)
        if dist_sq <= range_sq: yield (thing, dist_sq)

This can be especially useful if you might chain range checks (‘find things that are near X and within Nm of Y’, since you don’t have to calculate the distance again).

But what about if we’re searching a really large list of things and we anticipate a lot of them not being worth consideration?

There is actually a very simple optimization:

def in_range_all_the_things(origin, range, things):
    range_sq = range**2
    for thing in things:
        dist_sq = (origin.x - thing.x) ** 2
        if dist_sq <= range_sq:
            dist_sq += (origin.y - thing.y) ** 2
            if dist_sq <= range_sq:
                dist_sq += (origin.z - thing.z) ** 2
                if dist_sq <= range_sq:
                    yield thing

Whether this is useful will depend on the size of ‘things’.

def in_range_all_the_things(origin, range, things):
    range_sq = range**2
    if len(things) >= 4096:
        for thing in things:
            dist_sq = (origin.x - thing.x) ** 2
            if dist_sq <= range_sq:
                dist_sq += (origin.y - thing.y) ** 2
                if dist_sq <= range_sq:
                    dist_sq += (origin.z - thing.z) ** 2
                    if dist_sq <= range_sq:
                        yield thing
    elif len(things) > 32:
        for things in things:
            dist_sq = (origin.x - thing.x) ** 2
            if dist_sq <= range_sq:
                dist_sq += (origin.y - thing.y) ** 2 + (origin.z - thing.z) ** 2
                if dist_sq <= range_sq:
                    yield thing
    else:
        ... just calculate distance and range-check it ...

And again, consider yielding the dist_sq. Our hotdog example then becomes:

# Chaining generators
info = in_range_with_dist_sq(origin, walking_distance, hotdog_stands)
info = (stand, dist_sq**0.5 for stand, dist_sq in info)
for stand, dist in info:
    print("%s %.2fm" % (stand, dist))

回答 4

此问题解决方法的另一个实例:

def dist(x,y):   
    return numpy.sqrt(numpy.sum((x-y)**2))

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)

Another instance of this problem solving method:

def dist(x,y):   
    return numpy.sqrt(numpy.sum((x-y)**2))

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)

回答 5

从开始Python 3.8math模块直接提供dist函数,该函数返回两点之间的欧几里得距离(以元组或坐标列表形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果您正在使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

Starting Python 3.8, the math module directly provides the dist function, which returns the euclidean distance between two points (given as tuples or lists of coordinates):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

And if you’re working with lists:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

回答 6

可以像下面这样完成。我不知道它有多快,但是它没有使用NumPy。

from math import sqrt
a = (1, 2, 3) # Data point 1
b = (4, 5, 6) # Data point 2
print sqrt(sum( (a - b)**2 for a, b in zip(a, b)))

It can be done like the following. I don’t know how fast it is, but it’s not using NumPy.

from math import sqrt
a = (1, 2, 3) # Data point 1
b = (4, 5, 6) # Data point 2
print sqrt(sum( (a - b)**2 for a, b in zip(a, b)))

回答 7

我在matplotlib.mlab中找到了一个“ dist”函数,但我认为它并不方便。

我将其发布在这里仅供参考。

import numpy as np
import matplotlib as plt

a = np.array([1, 2, 3])
b = np.array([2, 3, 4])

# Distance between a and b
dis = plt.mlab.dist(a, b)

I find a ‘dist’ function in matplotlib.mlab, but I don’t think it’s handy enough.

I’m posting it here just for reference.

import numpy as np
import matplotlib as plt

a = np.array([1, 2, 3])
b = np.array([2, 3, 4])

# Distance between a and b
dis = plt.mlab.dist(a, b)

回答 8

我喜欢np.dot(点积):

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))

distance = (np.dot(a-b,a-b))**.5

I like np.dot (dot product):

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))

distance = (np.dot(a-b,a-b))**.5

回答 9

一个不错的单线:

dist = numpy.linalg.norm(a-b)

但是,如果需要考虑速度,建议您在计算机上进行实验。我发现在我的机器上使用带有操作符的平方math函数库比单行NumPy解决方案快得多。sqrt**

我使用以下简单程序运行了测试:

#!/usr/bin/python
import math
import numpy
from random import uniform

def fastest_calc_dist(p1,p2):
    return math.sqrt((p2[0] - p1[0]) ** 2 +
                     (p2[1] - p1[1]) ** 2 +
                     (p2[2] - p1[2]) ** 2)

def math_calc_dist(p1,p2):
    return math.sqrt(math.pow((p2[0] - p1[0]), 2) +
                     math.pow((p2[1] - p1[1]), 2) +
                     math.pow((p2[2] - p1[2]), 2))

def numpy_calc_dist(p1,p2):
    return numpy.linalg.norm(numpy.array(p1)-numpy.array(p2))

TOTAL_LOCATIONS = 1000

p1 = dict()
p2 = dict()
for i in range(0, TOTAL_LOCATIONS):
    p1[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))
    p2[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))

total_dist = 0
for i in range(0, TOTAL_LOCATIONS):
    for j in range(0, TOTAL_LOCATIONS):
        dist = fastest_calc_dist(p1[i], p2[j]) #change this line for testing
        total_dist += dist

print total_dist

在我的机器上,math_calc_dist运行速度比numpy_calc_dist:1.5秒和23.5秒。

为了获得与之间的可测量差异fastest_calc_distmath_calc_dist我必须达到TOTAL_LOCATIONS6000。然后fastest_calc_dist花费〜50 秒,而math_calc_dist花费〜60秒。

您也可以尝试用numpy.sqrtnumpy.square,虽然均高于较慢math我的机器上的替代品。

我的测试是使用Python 2.6.6运行的。

A nice one-liner:

dist = numpy.linalg.norm(a-b)

However, if speed is a concern I would recommend experimenting on your machine. I’ve found that using math library’s sqrt with the ** operator for the square is much faster on my machine than the one-liner NumPy solution.

I ran my tests using this simple program:

#!/usr/bin/python
import math
import numpy
from random import uniform

def fastest_calc_dist(p1,p2):
    return math.sqrt((p2[0] - p1[0]) ** 2 +
                     (p2[1] - p1[1]) ** 2 +
                     (p2[2] - p1[2]) ** 2)

def math_calc_dist(p1,p2):
    return math.sqrt(math.pow((p2[0] - p1[0]), 2) +
                     math.pow((p2[1] - p1[1]), 2) +
                     math.pow((p2[2] - p1[2]), 2))

def numpy_calc_dist(p1,p2):
    return numpy.linalg.norm(numpy.array(p1)-numpy.array(p2))

TOTAL_LOCATIONS = 1000

p1 = dict()
p2 = dict()
for i in range(0, TOTAL_LOCATIONS):
    p1[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))
    p2[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))

total_dist = 0
for i in range(0, TOTAL_LOCATIONS):
    for j in range(0, TOTAL_LOCATIONS):
        dist = fastest_calc_dist(p1[i], p2[j]) #change this line for testing
        total_dist += dist

print total_dist

On my machine, math_calc_dist runs much faster than numpy_calc_dist: 1.5 seconds versus 23.5 seconds.

To get a measurable difference between fastest_calc_dist and math_calc_dist I had to up TOTAL_LOCATIONS to 6000. Then fastest_calc_dist takes ~50 seconds while math_calc_dist takes ~60 seconds.

You can also experiment with numpy.sqrt and numpy.square though both were slower than the math alternatives on my machine.

My tests were run with Python 2.6.6.


回答 10

您可以先减去向量,然后减去内积。

按照您的示例,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = sqrt(sum_squared)

You can just subtract the vectors and then innerproduct.

Following your example,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = sqrt(sum_squared)

回答 11

拥有ab定义它们时,还可以使用:

distance = np.sqrt(np.sum((a-b)**2))

Having a and b as you defined them, you can use also:

distance = np.sqrt(np.sum((a-b)**2))

回答 12

使用Python 3.8,这非常容易。

https://docs.python.org/3/library/math.html#math.dist

math.dist(p, q)

返回两个点p和q之间的欧几里得距离,每个点以坐标序列(或可迭代)给出。这两个点必须具有相同的尺寸。

大致相当于:

sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

With Python 3.8, it’s very easy.

https://docs.python.org/3/library/math.html#math.dist

math.dist(p, q)

Return the Euclidean distance between two points p and q, each given as a sequence (or iterable) of coordinates. The two points must have the same dimension.

Roughly equivalent to:

sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))


回答 13

这是一些Python中的欧几里得距离的简洁代码,给出了用Python列表表示的两个点。

def distance(v1,v2): 
    return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)

Here’s some concise code for Euclidean distance in Python given two points represented as lists in Python.

def distance(v1,v2): 
    return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)

回答 14

从python 3.8开始

从Python 3.8开始,该math模块包含函数math.dist()
请参阅https://docs.python.org/3.8/library/math.html#math.dist

math.dist(p1,p2)
返回两个点p1和p2之间的欧几里得距离,每个点均以坐标序列(或可迭代)给出。

import math
print( math.dist( (0,0),   (1,1)   )) # sqrt(2) -> 1.4142
print( math.dist( (0,0,0), (1,1,1) )) # sqrt(3) -> 1.7321

Since Python 3.8

Since Python 3.8 the math module includes the function math.dist().
See here https://docs.python.org/3.8/library/math.html#math.dist.

math.dist(p1, p2)
Return the Euclidean distance between two points p1 and p2, each given as a sequence (or iterable) of coordinates.

import math
print( math.dist( (0,0),   (1,1)   )) # sqrt(2) -> 1.4142
print( math.dist( (0,0,0), (1,1,1) )) # sqrt(3) -> 1.7321

回答 15

计算多维空间的欧几里得距离:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845

Calculate the Euclidean distance for multidimensional space:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845

回答 16

import numpy as np
from scipy.spatial import distance
input_arr = np.array([[0,3,0],[2,0,0],[0,1,3],[0,1,2],[-1,0,1],[1,1,1]]) 
test_case = np.array([0,0,0])
dst=[]
for i in range(0,6):
    temp = distance.euclidean(test_case,input_arr[i])
    dst.append(temp)
print(dst)
import numpy as np
from scipy.spatial import distance
input_arr = np.array([[0,3,0],[2,0,0],[0,1,3],[0,1,2],[-1,0,1],[1,1,1]]) 
test_case = np.array([0,0,0])
dst=[]
for i in range(0,6):
    temp = distance.euclidean(test_case,input_arr[i])
    dst.append(temp)
print(dst)

回答 17

import math

dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)
import math

dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)

回答 18

您可以轻松使用公式

distance = np.sqrt(np.sum(np.square(a-b)))

实际上,这无非是使用毕达哥拉斯定理来计算距离,方法是将Δx,Δy和Δz的平方相加并取根。

You can easily use the formula

distance = np.sqrt(np.sum(np.square(a-b)))

which does actually nothing more than using Pythagoras’ theorem to calculate the distance, by adding the squares of Δx, Δy and Δz and rooting the result.


回答 19

首先找到两个矩阵的差。然后,使用numpy的乘法命令应用逐元素乘法。之后,找到逐元素相乘的新矩阵的总和。最后,找到求和的平方根。

def findEuclideanDistance(a, b):
    euclidean_distance = a - b
    euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
    euclidean_distance = np.sqrt(euclidean_distance)
    return euclidean_distance

Find difference of two matrices first. Then, apply element wise multiplication with numpy’s multiply command. After then, find summation of the element wise multiplied new matrix. Finally, find square root of the summation.

def findEuclideanDistance(a, b):
    euclidean_distance = a - b
    euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
    euclidean_distance = np.sqrt(euclidean_distance)
    return euclidean_distance

回答 20

import numpy as np
# any two python array as two points
a = [0, 0]
b = [3, 4]

您首先将列表更改为numpy array并执行以下操作:print(np.linalg.norm(np.array(a) - np.array(b)))。直接从python列表中获取的第二种方法为:print(np.linalg.norm(np.subtract(a,b)))

import numpy as np
# any two python array as two points
a = [0, 0]
b = [3, 4]

You first change list to numpy array and do like this: print(np.linalg.norm(np.array(a) - np.array(b))). Second method directly from python list as: print(np.linalg.norm(np.subtract(a,b)))


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。