问题:列出N以下所有素数的最快方法

这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

可以使它更快吗?

此代码有一个缺陷:由于numbers是无序集合,因此不能保证numbers.pop()从集合中删除最低的数字。但是,它对某些输入数字有效(至少对我而言):

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

This is the best algorithm I could come up.

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

Can it be made even faster?

This code has a flaw: Since numbers is an unordered set, there is no guarantee that numbers.pop() will remove the lowest number from the set. Nevertheless, it works (at least for me) for some input numbers:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

回答 0

警告: timeit由于硬件或Python版本的差异,结果可能会有所不同。

下面是一个脚本,比较了许多实现:

非常感谢斯蒂芬为使sieve_wheel_30引起我的注意。幸得罗伯特·威廉·汉克斯为primesfrom2to,primesfrom3to,rwh_primes,rwh_primes1和rwh_primes2。

使用psyco测试的简单Python方法中,对于n = 1000000, rwh_primes1是测试最快的方法。

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes1         | 43.0  |
| sieveOfAtkin        | 46.4  |
| rwh_primes          | 57.4  |
| sieve_wheel_30      | 63.0  |
| rwh_primes2         | 67.8  |    
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain    | 152.0 |
| sundaram3           | 194.0 |
+---------------------+-------+

没有psyco的情况下经过测试的普通Python方法中,对于n = 1000000, rwh_primes2是最快的。

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes2         | 68.1  |
| rwh_primes1         | 93.7  |
| rwh_primes          | 94.6  |
| sieve_wheel_30      | 97.4  |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain    | 286.0 |
| sieveOfAtkin        | 314.0 |
| sundaram3           | 416.0 |
+---------------------+-------+

在所有测试的方法中,允许numpy,对于n = 1000000, primesfrom2to是测试最快的方法。

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| primesfrom2to       | 15.9  |
| primesfrom3to       | 18.4  |
| ambi_sieve          | 29.3  |
+---------------------+-------+

使用以下命令测量时间:

python -mtimeit -s"import primes" "primes.{method}(1000000)"

{method}每个方法名称替换。

primes.py:

#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np

def rwh_primes(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

def rwh_primes1(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

def rwh_primes2(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n/3)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
        sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
    __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
    61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
    149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
    229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
    313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
    691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

    wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1  = [True] * dim
    tk7  = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x*y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
    # inner functions definition
    def del_mult(tk, start, step):
        for k in xrange(start, len(tk), step):
            tk[k] = False
    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]: p.append(cpos + 1)
        if tk7[pos]: p.append(cpos + 7)
        if tk11[pos]: p.append(cpos + 11)
        if tk13[pos]: p.append(cpos + 13)
        if tk17[pos]: p.append(cpos + 17)
        if tk19[pos]: p.append(cpos + 19)
        if tk23[pos]: p.append(cpos + 23)
        if tk29[pos]: p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos+1:]
    # return p list
    return p

def sieveOfEratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <dickinsm@gmail.com>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = range(3, n, 2)
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si*si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]

def sieveOfAtkin(end):
    """sieveOfAtkin(end): return a list of all the prime numbers <end
    using the Sieve of Atkin."""
    # Code by Steve Krenzel, <Sgk284@gmail.com>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = ((end-1) // 2)
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
    for xd in xrange(4, 8*x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
    for xd in xrange(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not(n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
    for x in xrange(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
        for d in xrange(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[:max(0,end-2)]

    for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in xrange(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s  = int(sqrt(end)) + 1
    if s  % 2 == 0:
        s += 1
    primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])

    return primes

def ambi_sieve_plain(n):
    s = range(3, n, 2)
    for m in xrange(3, int(n**0.5)+1, 2): 
        if s[(m-3)/2]: 
            for t in xrange((m*m-3)/2,(n>>1)-1,m):
                s[t]=0
    return [2]+[t for t in s if t>0]

def sundaram3(max_n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

################################################################################
# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in xrange(3, int(n ** 0.5)+1, 2): 
        if s[(m-3)/2]: 
            s[(m*m-3)/2::m]=0
    return np.r_[2, s[s>0]]

def primesfrom3to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns a array of primes, p < n """
    assert n>=2
    sieve = np.ones(n/2, dtype=np.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    

def primesfrom2to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

if __name__=='__main__':
    import itertools
    import sys

    def test(f1,f2,num):
        print('Testing {f1} and {f2} return same results'.format(
            f1=f1.func_name,
            f2=f2.func_name))
        if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
            sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))

    n=1000000
    test(sieveOfAtkin,sieveOfEratosthenes,n)
    test(sieveOfAtkin,ambi_sieve,n)
    test(sieveOfAtkin,ambi_sieve_plain,n) 
    test(sieveOfAtkin,sundaram3,n)
    test(sieveOfAtkin,sieve_wheel_30,n)
    test(sieveOfAtkin,primesfrom3to,n)
    test(sieveOfAtkin,primesfrom2to,n)
    test(sieveOfAtkin,rwh_primes,n)
    test(sieveOfAtkin,rwh_primes1,n)         
    test(sieveOfAtkin,rwh_primes2,n)

运行脚本会测试所有实现都给出相同的结果。

Warning: timeit results may vary due to differences in hardware or version of Python.

Below is a script which compares a number of implementations:

Many thanks to stephan for bringing sieve_wheel_30 to my attention. Credit goes to Robert William Hanks for primesfrom2to, primesfrom3to, rwh_primes, rwh_primes1, and rwh_primes2.

Of the plain Python methods tested, with psyco, for n=1000000, rwh_primes1 was the fastest tested.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes1         | 43.0  |
| sieveOfAtkin        | 46.4  |
| rwh_primes          | 57.4  |
| sieve_wheel_30      | 63.0  |
| rwh_primes2         | 67.8  |    
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain    | 152.0 |
| sundaram3           | 194.0 |
+---------------------+-------+

Of the plain Python methods tested, without psyco, for n=1000000, rwh_primes2 was the fastest.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| rwh_primes2         | 68.1  |
| rwh_primes1         | 93.7  |
| rwh_primes          | 94.6  |
| sieve_wheel_30      | 97.4  |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain    | 286.0 |
| sieveOfAtkin        | 314.0 |
| sundaram3           | 416.0 |
+---------------------+-------+

Of all the methods tested, allowing numpy, for n=1000000, primesfrom2to was the fastest tested.

+---------------------+-------+
| Method              | ms    |
+---------------------+-------+
| primesfrom2to       | 15.9  |
| primesfrom3to       | 18.4  |
| ambi_sieve          | 29.3  |
+---------------------+-------+

Timings were measured using the command:

python -mtimeit -s"import primes" "primes.{method}(1000000)"

with {method} replaced by each of the method names.

primes.py:

#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np

def rwh_primes(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
    return [2] + [i for i in xrange(3,n,2) if sieve[i]]

def rwh_primes1(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n/2)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
    return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]

def rwh_primes2(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n/3)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
        sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
    return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]

def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
    __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
    61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
    149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
    229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
    313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
    409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
    601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
    691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
    809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
    907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)

    wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1  = [True] * dim
    tk7  = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x*y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
    # inner functions definition
    def del_mult(tk, start, step):
        for k in xrange(start, len(tk), step):
            tk[k] = False
    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]: p.append(cpos + 1)
        if tk7[pos]: p.append(cpos + 7)
        if tk11[pos]: p.append(cpos + 11)
        if tk13[pos]: p.append(cpos + 13)
        if tk17[pos]: p.append(cpos + 17)
        if tk19[pos]: p.append(cpos + 19)
        if tk23[pos]: p.append(cpos + 23)
        if tk29[pos]: p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos+1:]
    # return p list
    return p

def sieveOfEratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <dickinsm@gmail.com>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = range(3, n, 2)
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si*si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]

def sieveOfAtkin(end):
    """sieveOfAtkin(end): return a list of all the prime numbers <end
    using the Sieve of Atkin."""
    # Code by Steve Krenzel, <Sgk284@gmail.com>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = ((end-1) // 2)
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
    for xd in xrange(4, 8*x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
    for xd in xrange(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end-x2))
        n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
        if not(n & 1):
            n -= n_diff
            n_diff -= 2
        for d in xrange((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
    for x in xrange(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
        for d in xrange(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[:max(0,end-2)]

    for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in xrange(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s  = int(sqrt(end)) + 1
    if s  % 2 == 0:
        s += 1
    primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])

    return primes

def ambi_sieve_plain(n):
    s = range(3, n, 2)
    for m in xrange(3, int(n**0.5)+1, 2): 
        if s[(m-3)/2]: 
            for t in xrange((m*m-3)/2,(n>>1)-1,m):
                s[t]=0
    return [2]+[t for t in s if t>0]

def sundaram3(max_n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

################################################################################
# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in xrange(3, int(n ** 0.5)+1, 2): 
        if s[(m-3)/2]: 
            s[(m*m-3)/2::m]=0
    return np.r_[2, s[s>0]]

def primesfrom3to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns a array of primes, p < n """
    assert n>=2
    sieve = np.ones(n/2, dtype=np.bool)
    for i in xrange(3,int(n**0.5)+1,2):
        if sieve[i/2]:
            sieve[i*i/2::i] = False
    return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    

def primesfrom2to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

if __name__=='__main__':
    import itertools
    import sys

    def test(f1,f2,num):
        print('Testing {f1} and {f2} return same results'.format(
            f1=f1.func_name,
            f2=f2.func_name))
        if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
            sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))

    n=1000000
    test(sieveOfAtkin,sieveOfEratosthenes,n)
    test(sieveOfAtkin,ambi_sieve,n)
    test(sieveOfAtkin,ambi_sieve_plain,n) 
    test(sieveOfAtkin,sundaram3,n)
    test(sieveOfAtkin,sieve_wheel_30,n)
    test(sieveOfAtkin,primesfrom3to,n)
    test(sieveOfAtkin,primesfrom2to,n)
    test(sieveOfAtkin,rwh_primes,n)
    test(sieveOfAtkin,rwh_primes1,n)         
    test(sieveOfAtkin,rwh_primes2,n)

Running the script tests that all implementations give the same result.


回答 1

更快,更明智的纯Python代码:

def primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
    return [2] + [i for i in range(3,n,2) if sieve[i]]

或从半筛开始

def primes1(n):
    """ Returns  a list of primes < n """
    sieve = [True] * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
    return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]

更快,更明智的内存numpy代码:

import numpy
def primesfrom3to(n):
    """ Returns a array of primes, 3 <= p < n """
    sieve = numpy.ones(n//2, dtype=numpy.bool)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = False
    return 2*numpy.nonzero(sieve)[0][1::]+1

从三分之一的筛子开始的更快的变化:

import numpy
def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k//3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)//3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

上述代码的(难编码)纯python版本为:

def primes2(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    n, correction = n-n%6+6, 2-(n%6>1)
    sieve = [True] * (n//3)
    for i in range(1,int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      k*k//3      ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
        sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

不幸的是,纯python并没有采用更简单,更快速的numpy方式进行赋值,并且len()像in [False]*len(sieve[((k*k)//3)::2*k])中那样在循环内调用太慢了。因此,我不得不即兴改正输入(避免更多的数学运算),并做一些极端的(令人痛苦的)数学魔术。

我个人认为numpy(已被广泛使用)不是Python标准库的一部分,而Python开发人员似乎完全忽略了语法和速度方面的改进,这是一个遗憾。

Faster & more memory-wise pure Python code:

def primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
    return [2] + [i for i in range(3,n,2) if sieve[i]]

or starting with half sieve

def primes1(n):
    """ Returns  a list of primes < n """
    sieve = [True] * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
    return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]

Faster & more memory-wise numpy code:

import numpy
def primesfrom3to(n):
    """ Returns a array of primes, 3 <= p < n """
    sieve = numpy.ones(n//2, dtype=numpy.bool)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = False
    return 2*numpy.nonzero(sieve)[0][1::]+1

a faster variation starting with a third of a sieve:

import numpy
def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k//3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)//3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

A (hard-to-code) pure-python version of the above code would be:

def primes2(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    n, correction = n-n%6+6, 2-(n%6>1)
    sieve = [True] * (n//3)
    for i in range(1,int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      k*k//3      ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
        sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

Unfortunately pure-python don’t adopt the simpler and faster numpy way of doing assignment, and calling len() inside the loop as in [False]*len(sieve[((k*k)//3)::2*k]) is too slow. So I had to improvise to correct input (& avoid more math) and do some extreme (& painful) math-magic.

Personally I think it is a shame that numpy (which is so widely used) is not part of Python standard library, and that the improvements in syntax and speed seem to be completely overlooked by Python developers.


回答 2

有从Python食谱一个漂亮整洁的样品这里 -建议对URL最快的版本是:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

这样就可以

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

使用pri.py中的这段代码在shell提示符下(我喜欢这样做)进行测量,我观察到:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

因此,看起来Cookbook解决方案的速度是以前的两倍。

There’s a pretty neat sample from the Python Cookbook here — the fastest version proposed on that URL is:

import itertools
def erat2( ):
    D = {  }
    yield 2
    for q in itertools.islice(itertools.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = p + q
            while x in D or not (x&1):
                x += p
            D[x] = p

so that would give

def get_primes_erat(n):
  return list(itertools.takewhile(lambda p: p<n, erat2()))

Measuring at the shell prompt (as I prefer to do) with this code in pri.py, I observe:

$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop

so it looks like the Cookbook solution is over twice as fast.


回答 3

我认为使用Sundaram的Sieve打破了纯Python的记录:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

对比:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop

Using Sundaram’s Sieve, I think I broke pure-Python’s record:

def sundaram3(max_n):
    numbers = range(3, max_n+1, 2)
    half = (max_n)//2
    initial = 4

    for step in xrange(3, max_n+1, 2):
        for i in xrange(initial, half, step):
            numbers[i-1] = 0
        initial += 2*(step+1)

        if initial > half:
            return [2] + filter(None, numbers)

Comparasion:

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop

C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop

回答 4

该算法速度很快,但存在严重缺陷:

>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529

您假设这numbers.pop()将返回集合中的最小数字,但是完全不能保证。集是无序的,并且pop()删除并返回任意元素,因此不能用于从其余数字中选择下一个素数。

The algorithm is fast, but it has a serious flaw:

>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529

You assume that numbers.pop() would return the smallest number in the set, but this is not guaranteed at all. Sets are unordered and pop() removes and returns an arbitrary element, so it cannot be used to select the next prime from the remaining numbers.


回答 5

对于具有足够大N的真正最快的解决方案,将是下载预先计算的素数列表,将其存储为元组,然后执行以下操作:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

如果N > primes[-1] 只是这样,则可以计算更多的质数并将新列表保存在您的代码中,因此下一次同样快。

始终在框外思考。

For truly fastest solution with sufficiently large N would be to download a pre-calculated list of primes, store it as a tuple and do something like:

for pos,i in enumerate(primes):
    if i > N:
        print primes[:pos]

If N > primes[-1] only then calculate more primes and save the new list in your code, so next time it is equally as fast.

Always think outside the box.


回答 6

如果您不想重新发明轮子,可以安装符号数学库sympy(是的,它与Python 3兼容)

pip install sympy

并使用primerange功能

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

If you don’t want to reinvent the wheel, you can install the symbolic maths library sympy (yes it’s Python 3 compatible)

pip install sympy

And use the primerange function

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

回答 7

如果您接受itertools但不接受numpy,则这是针对Python 3的rwh_primes2的改编版,其在我的计算机上的运行速度约为以前的两倍。唯一的实质性更改是使用字节数组而不是布尔值列表,并使用compress而不是列表推导来构建最终列表。(如果可以的话,我将其添加为类似moarningsun的评论。)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

比较:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801

If you accept itertools but not numpy, here is an adaptation of rwh_primes2 for Python 3 that runs about twice as fast on my machine. The only substantial change is using a bytearray instead of a list for the boolean, and using compress instead of a list comprehension to build the final list. (I’d add this as a comment like moarningsun if I were able.)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

Comparisons:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

and

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801

回答 8

编写自己的主要发现代码很有启发性,但是手头有一个快速可靠的库也很有用。我围绕C ++库primesieve编写了一个包装器,将其命名为primesieve-python

尝试一下 pip install primesieve

import primesieve
primes = primesieve.generate_primes(10**8)

我很好奇看到速度比较。

It’s instructive to write your own prime finding code, but it’s also useful to have a fast reliable library at hand. I wrote a wrapper around the C++ library primesieve, named it primesieve-python

Try it pip install primesieve

import primesieve
primes = primesieve.generate_primes(10**8)

I’d be curious to see the speed compared.


回答 9

这是最快的功能之一的两个更新版本(纯Python 3.6),

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

Here is two updated (pure Python 3.6) versions of one of the fastest functions,

from itertools import compress

def rwh_primes1v1(n):
    """ Returns  a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2)
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i//2]:
            sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

def rwh_primes1v2(n):
    """ Returns a list of primes < n for n > 2 """
    sieve = bytearray([True]) * (n//2+1)
    for i in range(1,int(n**0.5)//2+1):
        if sieve[i]:
            sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
    return [2,*compress(range(3,n,2), sieve[1:])]

回答 10

在N <9,080,191的假设下确定性实施Miller-Rabin素数检验

import sys
import random

def miller_rabin_pass(a, n):
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1

    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in xrange(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1


def miller_rabin(n):
    for a in [2, 3, 37, 73]:
      if not miller_rabin_pass(a, n):
        return False
    return True


n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
  if miller_rabin(p):
    primes.append(p)
print len(primes)

根据Wikipedia上的文章(http://en.wikipedia.org/wiki/Miller–Rabin_primality_test),测试N <9,080,191的a = 2,3,37和73足以确定N是否为复合值。

然后,我从此处找到的原始Miller-Rabin测试的概率实现中改编了源代码:http : //en.literateprograms.org/Miller-Rabin_primality_test_(Python)

A deterministic implementation of Miller-Rabin’s Primality test on the assumption that N < 9,080,191

import sys
import random

def miller_rabin_pass(a, n):
    d = n - 1
    s = 0
    while d % 2 == 0:
        d >>= 1
        s += 1

    a_to_power = pow(a, d, n)
    if a_to_power == 1:
        return True
    for i in xrange(s-1):
        if a_to_power == n - 1:
            return True
        a_to_power = (a_to_power * a_to_power) % n
    return a_to_power == n - 1


def miller_rabin(n):
    for a in [2, 3, 37, 73]:
      if not miller_rabin_pass(a, n):
        return False
    return True


n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
  if miller_rabin(p):
    primes.append(p)
print len(primes)

According to the article on Wikipedia (http://en.wikipedia.org/wiki/Miller–Rabin_primality_test) testing N < 9,080,191 for a = 2,3,37, and 73 is enough to decide whether N is composite or not.

And I adapted the source code from the probabilistic implementation of original Miller-Rabin’s test found here: http://en.literateprograms.org/Miller-Rabin_primality_test_(Python)


回答 11

如果您可以控制N,则列出所有素数的最快方法是预先计算它们。说真的 预计算是一种被忽略的优化方法。

If you have control over N, the very fastest way to list all primes is to precompute them. Seriously. Precomputing is a way overlooked optimization.


回答 12

这是我通常用于在Python中生成素数的代码:

$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)' 
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt

def sieve(size):
 prime=[True]*size
 rng=xrange
 limit=int(sqrt(size))

 for i in rng(3,limit+1,+2):
  if prime[i]:
   prime[i*i::+i]=[False]*len(prime[i*i::+i])

 return [2]+[i for i in rng(3,size,+2) if prime[i]]

if __name__=='__main__':
 print sieve(100)

它无法与此处发布的更快的解决方案竞争,但至少它是纯python。

感谢您发布此问题。今天我真的学到了很多东西。

Here’s the code I normally use to generate primes in Python:

$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)' 
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt

def sieve(size):
 prime=[True]*size
 rng=xrange
 limit=int(sqrt(size))

 for i in rng(3,limit+1,+2):
  if prime[i]:
   prime[i*i::+i]=[False]*len(prime[i*i::+i])

 return [2]+[i for i in rng(3,size,+2) if prime[i]]

if __name__=='__main__':
 print sieve(100)

It can’t compete with the faster solutions posted here, but at least it is pure python.

Thanks for posting this question. I really learnt a lot today.


回答 13

对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我要发布我的纯python版本,该版本比上面发布的食谱版本快50%。由于我将整个列表存储在内存中,因此您需要足够的空间来容纳所有内容,但它似乎可以很好地扩展。

def daniel_sieve_2(maxNumber):
    """
    Given a number, returns all numbers less than or equal to
    that number which are prime.
    """
    allNumbers = range(3, maxNumber+1, 2)
    for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
        if allNumbers[mIndex] == 0:
            continue
        # now set all multiples to 0
        for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
            allNumbers[index] = 0
    return [2] + filter(lambda n: n!=0, allNumbers)

结果:

>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
...                    "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
...                    "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms

For the fastest code, the numpy solution is the best. For purely academic reasons, though, I’m posting my pure python version, which is a bit less than 50% faster than the cookbook version posted above. Since I make the entire list in memory, you need enough space to hold everything, but it seems to scale fairly well.

def daniel_sieve_2(maxNumber):
    """
    Given a number, returns all numbers less than or equal to
    that number which are prime.
    """
    allNumbers = range(3, maxNumber+1, 2)
    for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
        if allNumbers[mIndex] == 0:
            continue
        # now set all multiples to 0
        for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
            allNumbers[index] = 0
    return [2] + filter(lambda n: n!=0, allNumbers)

And the results:

>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
...                    "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
...                    "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms

回答 14

使用Numpy的半筛的实现略有不同:

http://rebrained.com/?p=458

导入数学
导入numpy
def prime6(最高):
    primes = numpy.arange(3,最高+1,2)
    isprime = numpy.ones((最多1)/ 2,dtype = bool)
    对于素数[:int(math.sqrt(upto))]:
        如果isprime [(factor-2)/ 2]:isprime [(factor * 3-2)/ 2:(upto-1)/ 2:factor] = 0
    返回numpy.insert(primes [isprime],0,2)

有人可以将此与其他时间进行比较吗?在我的机器上,它看起来可以与其他Numpy半筛媲美。

A slightly different implementation of a half sieve using Numpy:

http://rebrained.com/?p=458

import math
import numpy
def prime6(upto):
    primes=numpy.arange(3,upto+1,2)
    isprime=numpy.ones((upto-1)/2,dtype=bool)
    for factor in primes[:int(math.sqrt(upto))]:
        if isprime[(factor-2)/2]: isprime[(factor*3-2)/2:(upto-1)/2:factor]=0
    return numpy.insert(primes[isprime],0,2)

Can someone compare this with the other timings? On my machine it seems pretty comparable to the other Numpy half-sieve.


回答 15

全部都经过编写和测试。因此,无需重新发明轮子。

python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

给我们打破了12.2毫秒的记录!

10 loops, best of 10: 12.2 msec per loop

如果这还不够快,您可以尝试PyPy:

pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

结果是:

10 loops, best of 10: 2.03 msec per loop

247次投票的答案列出了15.9毫秒的最佳解决方案。比较一下!!!

It’s all written and tested. So there is no need to reinvent the wheel.

python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

gives us a record breaking 12.2 msec!

10 loops, best of 10: 12.2 msec per loop

If this is not fast enough, you can try PyPy:

pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"

which results in:

10 loops, best of 10: 2.03 msec per loop

The answer with 247 up-votes lists 15.9 ms for the best solution. Compare this!!!


回答 16

我测试了一些unutbu的函数,用饥饿的数百万来计算

获奖者是使用numpy库的函数,

注意:进行内存利用率测试也很有趣:)

计算时间结果

样例代码

我的github存储库上的完整代码

#!/usr/bin/env python

import lib
import timeit
import sys
import math
import datetime

import prettyplotlib as ppl
import numpy as np

import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl

primenumbers_gen = [
    'sieveOfEratosthenes',
    'ambi_sieve',
    'ambi_sieve_plain',
    'sundaram3',
    'sieve_wheel_30',
    'primesfrom3to',
    'primesfrom2to',
    'rwh_primes',
    'rwh_primes1',
    'rwh_primes2',
]

def human_format(num):
    # /programming/579310/formatting-long-numbers-as-strings-in-python?answertab=active#tab-top
    magnitude = 0
    while abs(num) >= 1000:
        magnitude += 1
        num /= 1000.0
    # add more suffixes if you need them
    return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])


if __name__=='__main__':

    # Vars
    n = 10000000 # number itereration generator
    nbcol = 5 # For decompose prime number generator
    nb_benchloop = 3 # Eliminate false positive value during the test (bench average time)
    datetimeformat = '%Y-%m-%d %H:%M:%S.%f'
    config = 'from __main__ import n; import lib'
    primenumbers_gen = {
        'sieveOfEratosthenes': {'color': 'b'},
        'ambi_sieve': {'color': 'b'},
        'ambi_sieve_plain': {'color': 'b'},
         'sundaram3': {'color': 'b'},
        'sieve_wheel_30': {'color': 'b'},
# # #        'primesfrom2to': {'color': 'b'},
        'primesfrom3to': {'color': 'b'},
        # 'rwh_primes': {'color': 'b'},
        # 'rwh_primes1': {'color': 'b'},
        'rwh_primes2': {'color': 'b'},
    }


    # Get n in command line
    if len(sys.argv)>1:
        n = int(sys.argv[1])

    step = int(math.ceil(n / float(nbcol)))
    nbs = np.array([i * step for i in range(1, int(nbcol) + 1)])
    set2 = brewer2mpl.get_map('Paired', 'qualitative', 12).mpl_colors

    print datetime.datetime.now().strftime(datetimeformat)
    print("Compute prime number to %(n)s" % locals())
    print("")

    results = dict()
    for pgen in primenumbers_gen:
        results[pgen] = dict()
        benchtimes = list()
        for n in nbs:
            t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
            execute_times = t.repeat(repeat=nb_benchloop,number=1)
            benchtime = np.mean(execute_times)
            benchtimes.append(benchtime)
        results[pgen] = {'benchtimes':np.array(benchtimes)}

fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:

    bench = results[pgen]['benchtimes']
    avgs = np.divide(bench,nbs)
    avg = np.average(bench, weights=nbs)

    # Compute linear regression
    A = np.vstack([nbs, np.ones(len(nbs))]).T
    a, b = np.linalg.lstsq(A, nbs*avgs)[0]

    # Plot
    i += 1
    #label="%(pgen)s" % locals()
    #ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
    label="%(pgen)s avg" % locals()
    ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)

ppl.legend(ax, loc='upper left', ncol=4)

# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]

ax.set_xticklabels(labels)
ax = plt.gca()

plt.show()

I tested some unutbu’s functions, i computed it with hungred millions number

The winners are the functions that use numpy library,

Note: It would also interesting make a memory utilization test :)

Computation time result

Sample code

Complete code on my github repository

#!/usr/bin/env python

import lib
import timeit
import sys
import math
import datetime

import prettyplotlib as ppl
import numpy as np

import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl

primenumbers_gen = [
    'sieveOfEratosthenes',
    'ambi_sieve',
    'ambi_sieve_plain',
    'sundaram3',
    'sieve_wheel_30',
    'primesfrom3to',
    'primesfrom2to',
    'rwh_primes',
    'rwh_primes1',
    'rwh_primes2',
]

def human_format(num):
    # https://stackoverflow.com/questions/579310/formatting-long-numbers-as-strings-in-python?answertab=active#tab-top
    magnitude = 0
    while abs(num) >= 1000:
        magnitude += 1
        num /= 1000.0
    # add more suffixes if you need them
    return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])


if __name__=='__main__':

    # Vars
    n = 10000000 # number itereration generator
    nbcol = 5 # For decompose prime number generator
    nb_benchloop = 3 # Eliminate false positive value during the test (bench average time)
    datetimeformat = '%Y-%m-%d %H:%M:%S.%f'
    config = 'from __main__ import n; import lib'
    primenumbers_gen = {
        'sieveOfEratosthenes': {'color': 'b'},
        'ambi_sieve': {'color': 'b'},
        'ambi_sieve_plain': {'color': 'b'},
         'sundaram3': {'color': 'b'},
        'sieve_wheel_30': {'color': 'b'},
# # #        'primesfrom2to': {'color': 'b'},
        'primesfrom3to': {'color': 'b'},
        # 'rwh_primes': {'color': 'b'},
        # 'rwh_primes1': {'color': 'b'},
        'rwh_primes2': {'color': 'b'},
    }


    # Get n in command line
    if len(sys.argv)>1:
        n = int(sys.argv[1])

    step = int(math.ceil(n / float(nbcol)))
    nbs = np.array([i * step for i in range(1, int(nbcol) + 1)])
    set2 = brewer2mpl.get_map('Paired', 'qualitative', 12).mpl_colors

    print datetime.datetime.now().strftime(datetimeformat)
    print("Compute prime number to %(n)s" % locals())
    print("")

    results = dict()
    for pgen in primenumbers_gen:
        results[pgen] = dict()
        benchtimes = list()
        for n in nbs:
            t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
            execute_times = t.repeat(repeat=nb_benchloop,number=1)
            benchtime = np.mean(execute_times)
            benchtimes.append(benchtime)
        results[pgen] = {'benchtimes':np.array(benchtimes)}

fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:

    bench = results[pgen]['benchtimes']
    avgs = np.divide(bench,nbs)
    avg = np.average(bench, weights=nbs)

    # Compute linear regression
    A = np.vstack([nbs, np.ones(len(nbs))]).T
    a, b = np.linalg.lstsq(A, nbs*avgs)[0]

    # Plot
    i += 1
    #label="%(pgen)s" % locals()
    #ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
    label="%(pgen)s avg" % locals()
    ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)

ppl.legend(ax, loc='upper left', ncol=4)

# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]

ax.set_xticklabels(labels)
ax = plt.gca()

plt.show()

回答 17

对于Python 3

def rwh_primes2(n):
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n//3)
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)//3)      ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
        sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

For Python 3

def rwh_primes2(n):
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n//3)
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)//3)      ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
        sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

回答 18

纯Python中最快的基本筛

from itertools import compress

def half_sieve(n):
    """
    Returns a list of prime numbers less than `n`.
    """
    if n <= 2:
        return []
    sieve = bytearray([True]) * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
    primes = list(compress(range(1, n, 2), sieve))
    primes[0] = 2
    return primes

我优化了Eratosthenes筛的速度和内存。

基准测试

from time import clock
import platform

def benchmark(iterations, limit):
    start = clock()
    for x in range(iterations):
        half_sieve(limit)
    end = clock() - start
    print(f'{end/iterations:.4f} seconds for primes < {limit}')

if __name__ == '__main__':
    print(platform.python_version())
    print(platform.platform())
    print(platform.processor())
    it = 10
    for pw in range(4, 9):
        benchmark(it, 10**pw)

输出量

>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000

Fastest prime sieve in Pure Python:

from itertools import compress

def half_sieve(n):
    """
    Returns a list of prime numbers less than `n`.
    """
    if n <= 2:
        return []
    sieve = bytearray([True]) * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
    primes = list(compress(range(1, n, 2), sieve))
    primes[0] = 2
    return primes

I optimised Sieve of Eratosthenes for speed and memory.

Benchmark

from time import clock
import platform

def benchmark(iterations, limit):
    start = clock()
    for x in range(iterations):
        half_sieve(limit)
    end = clock() - start
    print(f'{end/iterations:.4f} seconds for primes < {limit}')

if __name__ == '__main__':
    print(platform.python_version())
    print(platform.platform())
    print(platform.processor())
    it = 10
    for pw in range(4, 9):
        benchmark(it, 10**pw)

Output

>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000

回答 19

第一次使用python,因此我在其中使用的某些方法似乎有点麻烦。我只是将我的c ++代码直接转换为python,这就是我所拥有的(尽管在python中有点slowww)

#!/usr/bin/env python
import time

def GetPrimes(n):

    Sieve = [1 for x in xrange(n)]

    Done = False
    w = 3

    while not Done:

        for q in xrange (3, n, 2):
            Prod = w*q
            if Prod < n:
                Sieve[Prod] = 0
            else:
                break

        if w > (n/2):
            Done = True
        w += 2

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes.py

在12.799119秒内找到664579质数!

#!/usr/bin/env python
import time

def GetPrimes2(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*3, n, k*2):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes2(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes2.py

在10.230172秒内找到664579质数!

#!/usr/bin/env python
import time

def GetPrimes3(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*k, n, k << 1):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes3(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

Python Primes2.py

在7.113776秒内发现664579质数!

First time using python, so some of the methods I use in this might seem a bit cumbersome. I just straight converted my c++ code to python and this is what I have (albeit a tad bit slowww in python)

#!/usr/bin/env python
import time

def GetPrimes(n):

    Sieve = [1 for x in xrange(n)]

    Done = False
    w = 3

    while not Done:

        for q in xrange (3, n, 2):
            Prod = w*q
            if Prod < n:
                Sieve[Prod] = 0
            else:
                break

        if w > (n/2):
            Done = True
        w += 2

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes.py

Found 664579 primes in 12.799119 seconds!

#!/usr/bin/env python
import time

def GetPrimes2(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*3, n, k*2):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes2(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

pythonw Primes2.py

Found 664579 primes in 10.230172 seconds!

#!/usr/bin/env python
import time

def GetPrimes3(n):

    Sieve = [1 for x in xrange(n)]

    for q in xrange (3, n, 2):
        k = q
        for y in xrange(k*k, n, k << 1):
            Sieve[y] = 0

    return Sieve



start = time.clock()

d = 10000000
Primes = GetPrimes3(d)

count = 1 #This is for 2

for x in xrange (3, d, 2):
    if Primes[x]:
        count+=1

elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"

python Primes2.py

Found 664579 primes in 7.113776 seconds!


回答 20

我知道比赛已经结束了几年。…

尽管如此,这是我对纯python主筛的建议,它基于在处理向前的筛子时通过使用适当的步骤来省略2、3和5的倍数。但是,对于N <10 ^ 9而言,它实际上要比@Robert William Hanks高级解决方案rwh_primes2和rwh_primes1慢。通过使用高于1.5 * 10 ^ 8的ctypes.c_ushort筛子数组,可以以某种方式适应内存限制。

10 ^ 6

$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(1000000)” 10个循环,每个循环最好3:46.7毫秒

比较:$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(1000000)” 10个循环,最好是3个循环:每个循环要进行43.2毫秒比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2 (1000000)“ 10个循环,最好为3:每个循环34.5毫秒

10 ^ 7

$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(10000000)” 10个循环,每循环最好530毫秒

比较:$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(10000000)” 10个循环,最好是3个循环:494毫秒比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2 (10000000)“ 10个循环,每个循环最好3:375毫秒

10 ^ 8

$ python -mtimeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(100000000)” 10个循环,每循环最好3:5.55秒

比较:$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(100000000)” 10个循环,最好每个循环进行3:5.33秒进行比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2 (100000000)“ 10个循环,每循环3:3.95秒的最佳时间

10 ^ 9

$ python -mtimeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(1000000000)” 10个循环,最好3个循环:每个循环61.2

比较:$ python -mtimeit -n 3 -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(1000000000)” 3个循环,最佳3:97.8 每个循环秒

比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2(1000000000)” 10个循环,最好3个循环:每个循环41.9秒

您可以将以下代码复制到ubuntus primeSieveSpeedComp中,以查看此测试。

def primeSieveSeq(MAX_Int):
    if MAX_Int > 5*10**8:
        import ctypes
        int16Array = ctypes.c_ushort * (MAX_Int >> 1)
        sieve = int16Array()
        #print 'uses ctypes "unsigned short int Array"'
    else:
        sieve = (MAX_Int >> 1) * [False]
        #print 'uses python list() of long long int'
    if MAX_Int < 10**8:
        sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
        sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
    r = [2, 3, 5]
    n = 0
    for i in xrange(int(MAX_Int**0.5)/30+1):
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
    if MAX_Int < 10**8:
        return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
    n = n >> 1
    try:
        for i in xrange((MAX_Int-2*n)/30 + 1):
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
    except:
        pass
    return r

I know the competition is closed for some years. …

Nonetheless this is my suggestion for a pure python prime sieve, based on omitting the multiples of 2, 3 and 5 by using appropriate steps while processing the sieve forward. Nonetheless it is actually slower for N<10^9 than @Robert William Hanks superior solutions rwh_primes2 and rwh_primes1. By using a ctypes.c_ushort sieve array above 1.5* 10^8 it is somehow adaptive to memory limits.

10^6

$ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.primeSieveSeq(1000000)” 10 loops, best of 3: 46.7 msec per loop

to compare:$ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes1(1000000)” 10 loops, best of 3: 43.2 msec per loop to compare: $ python -m timeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes2(1000000)” 10 loops, best of 3: 34.5 msec per loop

10^7

$ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.primeSieveSeq(10000000)” 10 loops, best of 3: 530 msec per loop

to compare:$ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes1(10000000)” 10 loops, best of 3: 494 msec per loop to compare: $ python -m timeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes2(10000000)” 10 loops, best of 3: 375 msec per loop

10^8

$ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.primeSieveSeq(100000000)” 10 loops, best of 3: 5.55 sec per loop

to compare: $ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes1(100000000)” 10 loops, best of 3: 5.33 sec per loop to compare: $ python -m timeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes2(100000000)” 10 loops, best of 3: 3.95 sec per loop

10^9

$ python -mtimeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.primeSieveSeq(1000000000)” 10 loops, best of 3: 61.2 sec per loop

to compare: $ python -mtimeit -n 3 -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes1(1000000000)” 3 loops, best of 3: 97.8 sec per loop

to compare: $ python -m timeit -s”import primeSieveSpeedComp” “primeSieveSpeedComp.rwh_primes2(1000000000)” 10 loops, best of 3: 41.9 sec per loop

You may copy the code below into ubuntus primeSieveSpeedComp to review this tests.

def primeSieveSeq(MAX_Int):
    if MAX_Int > 5*10**8:
        import ctypes
        int16Array = ctypes.c_ushort * (MAX_Int >> 1)
        sieve = int16Array()
        #print 'uses ctypes "unsigned short int Array"'
    else:
        sieve = (MAX_Int >> 1) * [False]
        #print 'uses python list() of long long int'
    if MAX_Int < 10**8:
        sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
        sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
    r = [2, 3, 5]
    n = 0
    for i in xrange(int(MAX_Int**0.5)/30+1):
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 2
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 3
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
        n += 1
        if not sieve[n]:
            n2 = (n << 1) + 1
            r.append(n2)
            n2q = (n2**2) >> 1
            sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
    if MAX_Int < 10**8:
        return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
    n = n >> 1
    try:
        for i in xrange((MAX_Int-2*n)/30 + 1):
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 2
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 3
            if not sieve[n]:
                r.append((n << 1) + 1)
            n += 1
            if not sieve[n]:
                r.append((n << 1) + 1)
    except:
        pass
    return r

回答 21

这是Eratosthenes筛子的numpy版本,具有良好的复杂性(比对长度为n的数组排序要低)和矢量化。与@unutbu相比,此速度与使用46微微秒的软件包查找所有小于一百万的质数的速度一样快。

import numpy as np 
def generate_primes(n):
    is_prime = np.ones(n+1,dtype=bool)
    is_prime[0:2] = False
    for i in range(int(n**0.5)+1):
        if is_prime[i]:
            is_prime[i**2::i]=False
    return np.where(is_prime)[0]

时间:

import time    
for i in range(2,10):
    timer =time.time()
    generate_primes(10**i)
    print('n = 10^',i,' time =', round(time.time()-timer,6))

>> n = 10^ 2  time = 5.6e-05
>> n = 10^ 3  time = 6.4e-05
>> n = 10^ 4  time = 0.000114
>> n = 10^ 5  time = 0.000593
>> n = 10^ 6  time = 0.00467
>> n = 10^ 7  time = 0.177758
>> n = 10^ 8  time = 1.701312
>> n = 10^ 9  time = 19.322478

Here is a numpy version of Sieve of Eratosthenes having both good complexity (lower than sorting an array of length n) and vectorization. Compared to @unutbu times this just as fast as the packages with 46 microsecons to find all primes below a million.

import numpy as np 
def generate_primes(n):
    is_prime = np.ones(n+1,dtype=bool)
    is_prime[0:2] = False
    for i in range(int(n**0.5)+1):
        if is_prime[i]:
            is_prime[i**2::i]=False
    return np.where(is_prime)[0]

Timings:

import time    
for i in range(2,10):
    timer =time.time()
    generate_primes(10**i)
    print('n = 10^',i,' time =', round(time.time()-timer,6))

>> n = 10^ 2  time = 5.6e-05
>> n = 10^ 3  time = 6.4e-05
>> n = 10^ 4  time = 0.000114
>> n = 10^ 5  time = 0.000593
>> n = 10^ 6  time = 0.00467
>> n = 10^ 7  time = 0.177758
>> n = 10^ 8  time = 1.701312
>> n = 10^ 9  time = 19.322478

回答 22

我已经更新了许多Python 3代码,并将其扔到了perfplot(我的一个项目)上,以查看哪个实际上最快。事实证明,对于大蛋糕nprimesfrom{2,3}to可以选择蛋糕:

在此处输入图片说明


复制剧情的代码:

import perfplot
from math import sqrt, ceil
import numpy as np
import sympy


def rwh_primes(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i]:
            sieve[i * i::2 * i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
    return [2] + [i for i in range(3, n, 2) if sieve[i]]


def rwh_primes1(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
    return [2] + [2 * i + 1 for i in range(1, n // 2) if sieve[i]]


def rwh_primes2(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """Input n>=6, Returns a list of primes, 2 <= p < n"""
    assert n >= 6
    correction = n % 6 > 1
    n = {0: n, 1: n - 1, 2: n + 4, 3: n + 3, 4: n + 2, 5: n + 1}[n % 6]
    sieve = [True] * (n // 3)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = [False] * (
                (n // 6 - (k * k) // 6 - 1) // k + 1
            )
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = [False] * (
                (n // 6 - (k * k + 4 * k - 2 * k * (i & 1)) // 6 - 1) // k + 1
            )
    return [2, 3] + [3 * i + 1 | 1 for i in range(1, n // 3 - correction) if sieve[i]]


def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    """ Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com."""
    __smallp = (
        2,
        3,
        5,
        7,
        11,
        13,
        17,
        19,
        23,
        29,
        31,
        37,
        41,
        43,
        47,
        53,
        59,
        61,
        67,
        71,
        73,
        79,
        83,
        89,
        97,
        101,
        103,
        107,
        109,
        113,
        127,
        131,
        137,
        139,
        149,
        151,
        157,
        163,
        167,
        173,
        179,
        181,
        191,
        193,
        197,
        199,
        211,
        223,
        227,
        229,
        233,
        239,
        241,
        251,
        257,
        263,
        269,
        271,
        277,
        281,
        283,
        293,
        307,
        311,
        313,
        317,
        331,
        337,
        347,
        349,
        353,
        359,
        367,
        373,
        379,
        383,
        389,
        397,
        401,
        409,
        419,
        421,
        431,
        433,
        439,
        443,
        449,
        457,
        461,
        463,
        467,
        479,
        487,
        491,
        499,
        503,
        509,
        521,
        523,
        541,
        547,
        557,
        563,
        569,
        571,
        577,
        587,
        593,
        599,
        601,
        607,
        613,
        617,
        619,
        631,
        641,
        643,
        647,
        653,
        659,
        661,
        673,
        677,
        683,
        691,
        701,
        709,
        719,
        727,
        733,
        739,
        743,
        751,
        757,
        761,
        769,
        773,
        787,
        797,
        809,
        811,
        821,
        823,
        827,
        829,
        839,
        853,
        857,
        859,
        863,
        877,
        881,
        883,
        887,
        907,
        911,
        919,
        929,
        937,
        941,
        947,
        953,
        967,
        971,
        977,
        983,
        991,
        997,
    )
    # wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1 = [True] * dim
    tk7 = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x * y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1: tk1, 7: tk7, 11: tk11, 13: tk13, 17: tk17, 19: tk19, 23: tk23, 29: tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))

    # inner functions definition
    def del_mult(tk, start, step):
        for k in range(start, len(tk), step):
            tk[k] = False

    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (
                    (pos + prime)
                    if off == 7
                    else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (
                    (pos + prime)
                    if off == 11
                    else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (
                    (pos + prime)
                    if off == 13
                    else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (
                    (pos + prime)
                    if off == 17
                    else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (
                    (pos + prime)
                    if off == 19
                    else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (
                    (pos + prime)
                    if off == 23
                    else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (
                    (pos + prime)
                    if off == 29
                    else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (
                    (pos + prime)
                    if off == 1
                    else (prime * (const * pos + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]:
            p.append(cpos + 1)
        if tk7[pos]:
            p.append(cpos + 7)
        if tk11[pos]:
            p.append(cpos + 11)
        if tk13[pos]:
            p.append(cpos + 13)
        if tk17[pos]:
            p.append(cpos + 17)
        if tk19[pos]:
            p.append(cpos + 19)
        if tk23[pos]:
            p.append(cpos + 23)
        if tk29[pos]:
            p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos + 1 :]
    # return p list
    return p


def sieve_of_eratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <dickinsm@gmail.com>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = list(range(3, n, 2))
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si * si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]


def sieve_of_atkin(end):
    """return a list of all the prime numbers <end using the Sieve of Atkin."""
    # Code by Steve Krenzel, <Sgk284@gmail.com>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = (end - 1) // 2
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end - 1) / 4.0)), 0, 4
    for xd in range(4, 8 * x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end - x2))
        n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in range((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end - 1) / 3.0)), 0, 3
    for xd in range(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end - x2))
        n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in range((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4 - 8 * (1 - end))) / 4), -1, 0, 3
    for x in range(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end:
            y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x * x + x) << 1) - 1, (((x - 1) << 1) - 2) << 1
        for d in range(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[: max(0, end - 2)]

    for n in range(5 >> 1, (int(sqrt(end)) + 1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in range(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s = int(sqrt(end)) + 1
    if s % 2 == 0:
        s += 1
    primes.extend([i for i in range(s, end, 2) if sieve[i >> 1]])

    return primes


def ambi_sieve_plain(n):
    s = list(range(3, n, 2))
    for m in range(3, int(n ** 0.5) + 1, 2):
        if s[(m - 3) // 2]:
            for t in range((m * m - 3) // 2, (n >> 1) - 1, m):
                s[t] = 0
    return [2] + [t for t in s if t > 0]


def sundaram3(max_n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n + 1, 2)
    half = (max_n) // 2
    initial = 4

    for step in range(3, max_n + 1, 2):
        for i in range(initial, half, step):
            numbers[i - 1] = 0
        initial += 2 * (step + 1)

        if initial > half:
            return [2] + filter(None, numbers)


# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in range(3, int(n ** 0.5) + 1, 2):
        if s[(m - 3) // 2]:
            s[(m * m - 3) // 2::m] = 0
    return np.r_[2, s[s > 0]]


def primesfrom3to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns an array of primes, p < n """
    assert n >= 2
    sieve = np.ones(n // 2, dtype=np.bool)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = False
    return np.r_[2, 2 * np.nonzero(sieve)[0][1::] + 1]


def primesfrom2to(n):
    # /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns an array of primes, 2 <= p < n """
    assert n >= 6
    sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = False
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0] + 1) | 1)]


def sympy_sieve(n):
    return list(sympy.sieve.primerange(1, n))


perfplot.save(
    "prime.png",
    setup=lambda n: n,
    kernels=[
        rwh_primes,
        rwh_primes1,
        rwh_primes2,
        sieve_wheel_30,
        sieve_of_eratosthenes,
        sieve_of_atkin,
        # ambi_sieve_plain,
        # sundaram3,
        ambi_sieve,
        primesfrom3to,
        primesfrom2to,
        sympy_sieve,
    ],
    n_range=[2 ** k for k in range(3, 25)],
    logx=True,
    logy=True,
    xlabel="n",
)

I’ve updated much of the code for Python 3 and threw it at perfplot (a project of mine) to see which is actually fastest. Turns out that, for large n, primesfrom{2,3}to take the cake:

enter image description here


Code to reproduce the plot:

import perfplot
from math import sqrt, ceil
import numpy as np
import sympy


def rwh_primes(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i]:
            sieve[i * i::2 * i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
    return [2] + [i for i in range(3, n, 2) if sieve[i]]


def rwh_primes1(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns  a list of primes < n """
    sieve = [True] * (n // 2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
    return [2] + [2 * i + 1 for i in range(1, n // 2) if sieve[i]]


def rwh_primes2(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """Input n>=6, Returns a list of primes, 2 <= p < n"""
    assert n >= 6
    correction = n % 6 > 1
    n = {0: n, 1: n - 1, 2: n + 4, 3: n + 3, 4: n + 2, 5: n + 1}[n % 6]
    sieve = [True] * (n // 3)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = [False] * (
                (n // 6 - (k * k) // 6 - 1) // k + 1
            )
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = [False] * (
                (n // 6 - (k * k + 4 * k - 2 * k * (i & 1)) // 6 - 1) // k + 1
            )
    return [2, 3] + [3 * i + 1 | 1 for i in range(1, n // 3 - correction) if sieve[i]]


def sieve_wheel_30(N):
    # http://zerovolt.com/?p=88
    """ Returns a list of primes <= N using wheel criterion 2*3*5 = 30

Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com."""
    __smallp = (
        2,
        3,
        5,
        7,
        11,
        13,
        17,
        19,
        23,
        29,
        31,
        37,
        41,
        43,
        47,
        53,
        59,
        61,
        67,
        71,
        73,
        79,
        83,
        89,
        97,
        101,
        103,
        107,
        109,
        113,
        127,
        131,
        137,
        139,
        149,
        151,
        157,
        163,
        167,
        173,
        179,
        181,
        191,
        193,
        197,
        199,
        211,
        223,
        227,
        229,
        233,
        239,
        241,
        251,
        257,
        263,
        269,
        271,
        277,
        281,
        283,
        293,
        307,
        311,
        313,
        317,
        331,
        337,
        347,
        349,
        353,
        359,
        367,
        373,
        379,
        383,
        389,
        397,
        401,
        409,
        419,
        421,
        431,
        433,
        439,
        443,
        449,
        457,
        461,
        463,
        467,
        479,
        487,
        491,
        499,
        503,
        509,
        521,
        523,
        541,
        547,
        557,
        563,
        569,
        571,
        577,
        587,
        593,
        599,
        601,
        607,
        613,
        617,
        619,
        631,
        641,
        643,
        647,
        653,
        659,
        661,
        673,
        677,
        683,
        691,
        701,
        709,
        719,
        727,
        733,
        739,
        743,
        751,
        757,
        761,
        769,
        773,
        787,
        797,
        809,
        811,
        821,
        823,
        827,
        829,
        839,
        853,
        857,
        859,
        863,
        877,
        881,
        883,
        887,
        907,
        911,
        919,
        929,
        937,
        941,
        947,
        953,
        967,
        971,
        977,
        983,
        991,
        997,
    )
    # wheel = (2, 3, 5)
    const = 30
    if N < 2:
        return []
    if N <= const:
        pos = 0
        while __smallp[pos] <= N:
            pos += 1
        return list(__smallp[:pos])
    # make the offsets list
    offsets = (7, 11, 13, 17, 19, 23, 29, 1)
    # prepare the list
    p = [2, 3, 5]
    dim = 2 + N // const
    tk1 = [True] * dim
    tk7 = [True] * dim
    tk11 = [True] * dim
    tk13 = [True] * dim
    tk17 = [True] * dim
    tk19 = [True] * dim
    tk23 = [True] * dim
    tk29 = [True] * dim
    tk1[0] = False
    # help dictionary d
    # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
    # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
    # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
    d = {}
    for x in offsets:
        for y in offsets:
            res = (x * y) % const
            if res in offsets:
                d[(x, res)] = y
    # another help dictionary: gives tkx calling tmptk[x]
    tmptk = {1: tk1, 7: tk7, 11: tk11, 13: tk13, 17: tk17, 19: tk19, 23: tk23, 29: tk29}
    pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))

    # inner functions definition
    def del_mult(tk, start, step):
        for k in range(start, len(tk), step):
            tk[k] = False

    # end of inner functions definition
    cpos = const * pos
    while prime < stop:
        # 30k + 7
        if tk7[pos]:
            prime = cpos + 7
            p.append(prime)
            lastadded = 7
            for off in offsets:
                tmp = d[(7, off)]
                start = (
                    (pos + prime)
                    if off == 7
                    else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 11
        if tk11[pos]:
            prime = cpos + 11
            p.append(prime)
            lastadded = 11
            for off in offsets:
                tmp = d[(11, off)]
                start = (
                    (pos + prime)
                    if off == 11
                    else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 13
        if tk13[pos]:
            prime = cpos + 13
            p.append(prime)
            lastadded = 13
            for off in offsets:
                tmp = d[(13, off)]
                start = (
                    (pos + prime)
                    if off == 13
                    else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 17
        if tk17[pos]:
            prime = cpos + 17
            p.append(prime)
            lastadded = 17
            for off in offsets:
                tmp = d[(17, off)]
                start = (
                    (pos + prime)
                    if off == 17
                    else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 19
        if tk19[pos]:
            prime = cpos + 19
            p.append(prime)
            lastadded = 19
            for off in offsets:
                tmp = d[(19, off)]
                start = (
                    (pos + prime)
                    if off == 19
                    else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 23
        if tk23[pos]:
            prime = cpos + 23
            p.append(prime)
            lastadded = 23
            for off in offsets:
                tmp = d[(23, off)]
                start = (
                    (pos + prime)
                    if off == 23
                    else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # 30k + 29
        if tk29[pos]:
            prime = cpos + 29
            p.append(prime)
            lastadded = 29
            for off in offsets:
                tmp = d[(29, off)]
                start = (
                    (pos + prime)
                    if off == 29
                    else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
        # now we go back to top tk1, so we need to increase pos by 1
        pos += 1
        cpos = const * pos
        # 30k + 1
        if tk1[pos]:
            prime = cpos + 1
            p.append(prime)
            lastadded = 1
            for off in offsets:
                tmp = d[(1, off)]
                start = (
                    (pos + prime)
                    if off == 1
                    else (prime * (const * pos + tmp)) // const
                )
                del_mult(tmptk[off], start, prime)
    # time to add remaining primes
    # if lastadded == 1, remove last element and start adding them from tk1
    # this way we don't need an "if" within the last while
    if lastadded == 1:
        p.pop()
    # now complete for every other possible prime
    while pos < len(tk1):
        cpos = const * pos
        if tk1[pos]:
            p.append(cpos + 1)
        if tk7[pos]:
            p.append(cpos + 7)
        if tk11[pos]:
            p.append(cpos + 11)
        if tk13[pos]:
            p.append(cpos + 13)
        if tk17[pos]:
            p.append(cpos + 17)
        if tk19[pos]:
            p.append(cpos + 19)
        if tk23[pos]:
            p.append(cpos + 23)
        if tk29[pos]:
            p.append(cpos + 29)
        pos += 1
    # remove exceeding if present
    pos = len(p) - 1
    while p[pos] > N:
        pos -= 1
    if pos < len(p) - 1:
        del p[pos + 1 :]
    # return p list
    return p


def sieve_of_eratosthenes(n):
    """sieveOfEratosthenes(n): return the list of the primes < n."""
    # Code from: <dickinsm@gmail.com>, Nov 30 2006
    # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
    if n <= 2:
        return []
    sieve = list(range(3, n, 2))
    top = len(sieve)
    for si in sieve:
        if si:
            bottom = (si * si - 3) // 2
            if bottom >= top:
                break
            sieve[bottom::si] = [0] * -((bottom - top) // si)
    return [2] + [el for el in sieve if el]


def sieve_of_atkin(end):
    """return a list of all the prime numbers <end using the Sieve of Atkin."""
    # Code by Steve Krenzel, <Sgk284@gmail.com>, improved
    # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
    # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
    assert end > 0
    lng = (end - 1) // 2
    sieve = [False] * (lng + 1)

    x_max, x2, xd = int(sqrt((end - 1) / 4.0)), 0, 4
    for xd in range(4, 8 * x_max + 2, 8):
        x2 += xd
        y_max = int(sqrt(end - x2))
        n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in range((n_diff - 1) << 1, -1, -8):
            m = n % 12
            if m == 1 or m == 5:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, x2, xd = int(sqrt((end - 1) / 3.0)), 0, 3
    for xd in range(3, 6 * x_max + 2, 6):
        x2 += xd
        y_max = int(sqrt(end - x2))
        n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
        if not (n & 1):
            n -= n_diff
            n_diff -= 2
        for d in range((n_diff - 1) << 1, -1, -8):
            if n % 12 == 7:
                m = n >> 1
                sieve[m] = not sieve[m]
            n -= d

    x_max, y_min, x2, xd = int((2 + sqrt(4 - 8 * (1 - end))) / 4), -1, 0, 3
    for x in range(1, x_max + 1):
        x2 += xd
        xd += 6
        if x2 >= end:
            y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
        n, n_diff = ((x * x + x) << 1) - 1, (((x - 1) << 1) - 2) << 1
        for d in range(n_diff, y_min, -8):
            if n % 12 == 11:
                m = n >> 1
                sieve[m] = not sieve[m]
            n += d

    primes = [2, 3]
    if end <= 3:
        return primes[: max(0, end - 2)]

    for n in range(5 >> 1, (int(sqrt(end)) + 1) >> 1):
        if sieve[n]:
            primes.append((n << 1) + 1)
            aux = (n << 1) + 1
            aux *= aux
            for k in range(aux, end, 2 * aux):
                sieve[k >> 1] = False

    s = int(sqrt(end)) + 1
    if s % 2 == 0:
        s += 1
    primes.extend([i for i in range(s, end, 2) if sieve[i >> 1]])

    return primes


def ambi_sieve_plain(n):
    s = list(range(3, n, 2))
    for m in range(3, int(n ** 0.5) + 1, 2):
        if s[(m - 3) // 2]:
            for t in range((m * m - 3) // 2, (n >> 1) - 1, m):
                s[t] = 0
    return [2] + [t for t in s if t > 0]


def sundaram3(max_n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
    numbers = range(3, max_n + 1, 2)
    half = (max_n) // 2
    initial = 4

    for step in range(3, max_n + 1, 2):
        for i in range(initial, half, step):
            numbers[i - 1] = 0
        initial += 2 * (step + 1)

        if initial > half:
            return [2] + filter(None, numbers)


# Using Numpy:
def ambi_sieve(n):
    # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
    s = np.arange(3, n, 2)
    for m in range(3, int(n ** 0.5) + 1, 2):
        if s[(m - 3) // 2]:
            s[(m * m - 3) // 2::m] = 0
    return np.r_[2, s[s > 0]]


def primesfrom3to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Returns an array of primes, p < n """
    assert n >= 2
    sieve = np.ones(n // 2, dtype=np.bool)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i // 2]:
            sieve[i * i // 2::i] = False
    return np.r_[2, 2 * np.nonzero(sieve)[0][1::] + 1]


def primesfrom2to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns an array of primes, 2 <= p < n """
    assert n >= 6
    sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
    sieve[0] = False
    for i in range(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = False
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
    return np.r_[2, 3, ((3 * np.nonzero(sieve)[0] + 1) | 1)]


def sympy_sieve(n):
    return list(sympy.sieve.primerange(1, n))


perfplot.save(
    "prime.png",
    setup=lambda n: n,
    kernels=[
        rwh_primes,
        rwh_primes1,
        rwh_primes2,
        sieve_wheel_30,
        sieve_of_eratosthenes,
        sieve_of_atkin,
        # ambi_sieve_plain,
        # sundaram3,
        ambi_sieve,
        primesfrom3to,
        primesfrom2to,
        sympy_sieve,
    ],
    n_range=[2 ** k for k in range(3, 25)],
    logx=True,
    logy=True,
    xlabel="n",
)

回答 23

我的猜测是最快所有方式中的就是对代码中的素数进行硬编码。

因此,为什么不编写一个缓慢的脚本来生成另一个包含所有数字的源文件,然后在运行实际程序时导入该源文件。

当然,仅当您在编译时知道N的上限时,此方法才有效,但是(几乎)所有项目Euler问题都是如此。

 

PS: 我可能错了,尽管使用硬连线素数解析源代码比首先计算它们要慢,但是据我所知Python运行于编译.pyc文件中,因此读取所有素数不超过N的二进制数组应该很血腥在这种情况下很快。

My guess is that the fastest of all ways is to hard code the primes in your code.

So why not just write a slow script that generates another source file that has all numbers hardwired in it, and then import that source file when you run your actual program.

Of course, this works only if you know the upper bound of N at compile time, but thus is the case for (almost) all project Euler problems.

 

PS: I might be wrong though iff parsing the source with hard-wired primes is slower than computing them in the first place, but as far I know Python runs from compiled .pyc files so reading a binary array with all primes up to N should be bloody fast in that case.


回答 24

很抱歉打扰,但是erat2()在算法中存在严重缺陷。

在搜索下一个复合词时,我们仅需要测试奇数。q,p都是奇数;那么q + p是偶数,不需要测试,但是q + 2 * p总是奇数。这消除了while循环条件下的“ if even”测试,并节省了大约30%的运行时间。

当我们讨论它时:使用优雅的’D.pop(q,None)’获取和删除方法,而不是’if q in D:p = D [q],del D [q]’,它快两倍!至少在我的机器上(P3-1Ghz)。所以我建议这种聪明算法的实现:

def erat3( ):
    from itertools import islice, count

    # q is the running integer that's checked for primeness.
    # yield 2 and no other even number thereafter
    yield 2
    D = {}
    # no need to mark D[4] as we will test odd numbers only
    for q in islice(count(3),0,None,2):
        if q in D:                  #  is composite
            p = D[q]
            del D[q]
            # q is composite. p=D[q] is the first prime that
            # divides it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next
            # multiple of its witnesses to prepare for larger
            # numbers.
            x = q + p+p        # next odd(!) multiple
            while x in D:      # skip composites
                x += p+p
            D[x] = p
        else:                  # is prime
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations.
            D[q*q] = q
            yield q

Sorry to bother but erat2() has a serious flaw in the algorithm.

While searching for the next composite, we need to test odd numbers only. q,p both are odd; then q+p is even and doesn’t need to be tested, but q+2*p is always odd. This eliminates the “if even” test in the while loop condition and saves about 30% of the runtime.

While we’re at it: instead of the elegant ‘D.pop(q,None)’ get and delete method use ‘if q in D: p=D[q],del D[q]’ which is twice as fast! At least on my machine (P3-1Ghz). So I suggest this implementation of this clever algorithm:

def erat3( ):
    from itertools import islice, count

    # q is the running integer that's checked for primeness.
    # yield 2 and no other even number thereafter
    yield 2
    D = {}
    # no need to mark D[4] as we will test odd numbers only
    for q in islice(count(3),0,None,2):
        if q in D:                  #  is composite
            p = D[q]
            del D[q]
            # q is composite. p=D[q] is the first prime that
            # divides it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next
            # multiple of its witnesses to prepare for larger
            # numbers.
            x = q + p+p        # next odd(!) multiple
            while x in D:      # skip composites
                x += p+p
            D[x] = p
        else:                  # is prime
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations.
            D[q*q] = q
            yield q

回答 25

到目前为止,我尝试过的最快方法是基于Python Cookbookerat2函数:

import itertools as it
def erat2a( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

有关加速的说明,请参见此答案。

The fastest method I’ve tried so far is based on the Python cookbook erat2 function:

import itertools as it
def erat2a( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

See this answer for an explanation of the speeding-up.


回答 26

我可能聚会晚了,但是必须为此添加我自己的代码。它占用的空间大约为n / 2,因为我们不需要存储偶数,而且我还使用了bitarray python模块,从而进一步大大减少了内存消耗,并使所有素数的计算能力高达1,000,000,000

from bitarray import bitarray
def primes_to(n):
    size = n//2
    sieve = bitarray(size)
    sieve.setall(1)
    limit = int(n**0.5)
    for i in range(1,limit):
        if sieve[i]:
            val = 2*i+1
            sieve[(i+i*val)::val] = 0
    return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]

python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop

这是在64位2.4GHZ MAC OSX 10.8.3上运行的

I may be late to the party but will have to add my own code for this. It uses approximately n/2 in space because we don’t need to store even numbers and I also make use of the bitarray python module, further draStically cutting down on memory consumption and enabling computing all primes up to 1,000,000,000

from bitarray import bitarray
def primes_to(n):
    size = n//2
    sieve = bitarray(size)
    sieve.setall(1)
    limit = int(n**0.5)
    for i in range(1,limit):
        if sieve[i]:
            val = 2*i+1
            sieve[(i+i*val)::val] = 0
    return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]

python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop

This was run on a 64bit 2.4GHZ MAC OSX 10.8.3


回答 27

随着时间的推移,我收集了几个质数筛。我的计算机上最快的是:

from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
    a = [True] * limit
    a[0] = a[1] = False
    #a[2] = True
    for n in xrange(4, limit, 2):
        a[n] = False
    root_limit = int(limit**.5)+1
    for i in xrange(3,root_limit):
        if a[i]:
            for n in xrange(i*i, limit, 2*i):
                a[n] = False
    return a

LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s

I collected several prime number sieves over time. The fastest on my computer is this:

from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
    a = [True] * limit
    a[0] = a[1] = False
    #a[2] = True
    for n in xrange(4, limit, 2):
        a[n] = False
    root_limit = int(limit**.5)+1
    for i in xrange(3,root_limit):
        if a[i]:
            for n in xrange(i*i, limit, 2*i):
                a[n] = False
    return a

LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s

回答 28

我对这个问题的回答很慢,但这似乎很有趣。我正在使用numpy,这可能会作弊,我怀疑这种方法是最快的,但应该清楚。它筛选仅引用其索引的布尔数组,并从所有True值的索引中引出质数。无需取模。

import numpy as np
def ajs_primes3a(upto):
    mat = np.ones((upto), dtype=bool)
    mat[0] = False
    mat[1] = False
    mat[4::2] = False
    for idx in range(3, int(upto ** 0.5)+1, 2):
        mat[idx*2::idx] = False
    return np.where(mat == True)[0]

I’m slow responding to this question but it seemed like a fun exercise. I’m using numpy which might be cheating and I doubt this method is the fastest but it should be clear. It sieves a Boolean array referring to its indices only and elicits prime numbers from the indices of all True values. No modulo needed.

import numpy as np
def ajs_primes3a(upto):
    mat = np.ones((upto), dtype=bool)
    mat[0] = False
    mat[1] = False
    mat[4::2] = False
    for idx in range(3, int(upto ** 0.5)+1, 2):
        mat[idx*2::idx] = False
    return np.where(mat == True)[0]

回答 29

这是一种有趣的技术,可以使用python的列表推导来生成质数(但不是最有效的):

noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]

您可以在此处找到示例和一些说明

Here is an interesting technique to generate prime numbers (yet not the most efficient) using python’s list comprehensions:

noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]

You can find the example and some explanations right here


声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。