问题:列出N以下所有素数的最快方法
这是我能想到的最好的算法。
def get_primes(n):
numbers = set(range(n, 1, -1))
primes = []
while numbers:
p = numbers.pop()
primes.append(p)
numbers.difference_update(set(range(p*2, n+1, p)))
return primes
>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import get_primes').timeit(1)
1.1499958793645562
可以使它更快吗?
此代码有一个缺陷:由于numbers
是无序集合,因此不能保证numbers.pop()
从集合中删除最低的数字。但是,它对某些输入数字有效(至少对我而言):
>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True
回答 0
警告: timeit
由于硬件或Python版本的差异,结果可能会有所不同。
下面是一个脚本,比较了许多实现:
- ambi_sieve_plain,
- rwh_primes,
- rwh_primes1,
- rwh_primes2,
- sieveOfAtkin,
- 埃拉托斯特尼筛法,
- 孙达拉姆3,
- sieve_wheel_30,
- ambi_sieve(需要numpy)
- primesfrom3to(需要numpy)
- primesfrom2to(需要numpy)
非常感谢斯蒂芬为使sieve_wheel_30引起我的注意。幸得罗伯特·威廉·汉克斯为primesfrom2to,primesfrom3to,rwh_primes,rwh_primes1和rwh_primes2。
在使用psyco测试的简单Python方法中,对于n = 1000000, rwh_primes1是测试最快的方法。
+---------------------+-------+
| Method | ms |
+---------------------+-------+
| rwh_primes1 | 43.0 |
| sieveOfAtkin | 46.4 |
| rwh_primes | 57.4 |
| sieve_wheel_30 | 63.0 |
| rwh_primes2 | 67.8 |
| sieveOfEratosthenes | 147.0 |
| ambi_sieve_plain | 152.0 |
| sundaram3 | 194.0 |
+---------------------+-------+
在没有psyco的情况下经过测试的普通Python方法中,对于n = 1000000, rwh_primes2是最快的。
+---------------------+-------+
| Method | ms |
+---------------------+-------+
| rwh_primes2 | 68.1 |
| rwh_primes1 | 93.7 |
| rwh_primes | 94.6 |
| sieve_wheel_30 | 97.4 |
| sieveOfEratosthenes | 178.0 |
| ambi_sieve_plain | 286.0 |
| sieveOfAtkin | 314.0 |
| sundaram3 | 416.0 |
+---------------------+-------+
在所有测试的方法中,允许numpy,对于n = 1000000, primesfrom2to是测试最快的方法。
+---------------------+-------+
| Method | ms |
+---------------------+-------+
| primesfrom2to | 15.9 |
| primesfrom3to | 18.4 |
| ambi_sieve | 29.3 |
+---------------------+-------+
使用以下命令测量时间:
python -mtimeit -s"import primes" "primes.{method}(1000000)"
用{method}
每个方法名称替换。
primes.py:
#!/usr/bin/env python
import psyco; psyco.full()
from math import sqrt, ceil
import numpy as np
def rwh_primes(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a list of primes < n """
sieve = [True] * n
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i]:
sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
return [2] + [i for i in xrange(3,n,2) if sieve[i]]
def rwh_primes1(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a list of primes < n """
sieve = [True] * (n/2)
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i/2]:
sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]
def rwh_primes2(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a list of primes, 2 <= p < n """
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n/3)
sieve[0] = False
for i in xrange(int(n**0.5)/3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)/3) ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]
def sieve_wheel_30(N):
# http://zerovolt.com/?p=88
''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30
Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
__smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)
wheel = (2, 3, 5)
const = 30
if N < 2:
return []
if N <= const:
pos = 0
while __smallp[pos] <= N:
pos += 1
return list(__smallp[:pos])
# make the offsets list
offsets = (7, 11, 13, 17, 19, 23, 29, 1)
# prepare the list
p = [2, 3, 5]
dim = 2 + N // const
tk1 = [True] * dim
tk7 = [True] * dim
tk11 = [True] * dim
tk13 = [True] * dim
tk17 = [True] * dim
tk19 = [True] * dim
tk23 = [True] * dim
tk29 = [True] * dim
tk1[0] = False
# help dictionary d
# d[a , b] = c ==> if I want to find the smallest useful multiple of (30*pos)+a
# on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
# in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
d = {}
for x in offsets:
for y in offsets:
res = (x*y) % const
if res in offsets:
d[(x, res)] = y
# another help dictionary: gives tkx calling tmptk[x]
tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
# inner functions definition
def del_mult(tk, start, step):
for k in xrange(start, len(tk), step):
tk[k] = False
# end of inner functions definition
cpos = const * pos
while prime < stop:
# 30k + 7
if tk7[pos]:
prime = cpos + 7
p.append(prime)
lastadded = 7
for off in offsets:
tmp = d[(7, off)]
start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 11
if tk11[pos]:
prime = cpos + 11
p.append(prime)
lastadded = 11
for off in offsets:
tmp = d[(11, off)]
start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 13
if tk13[pos]:
prime = cpos + 13
p.append(prime)
lastadded = 13
for off in offsets:
tmp = d[(13, off)]
start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 17
if tk17[pos]:
prime = cpos + 17
p.append(prime)
lastadded = 17
for off in offsets:
tmp = d[(17, off)]
start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 19
if tk19[pos]:
prime = cpos + 19
p.append(prime)
lastadded = 19
for off in offsets:
tmp = d[(19, off)]
start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 23
if tk23[pos]:
prime = cpos + 23
p.append(prime)
lastadded = 23
for off in offsets:
tmp = d[(23, off)]
start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# 30k + 29
if tk29[pos]:
prime = cpos + 29
p.append(prime)
lastadded = 29
for off in offsets:
tmp = d[(29, off)]
start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
del_mult(tmptk[off], start, prime)
# now we go back to top tk1, so we need to increase pos by 1
pos += 1
cpos = const * pos
# 30k + 1
if tk1[pos]:
prime = cpos + 1
p.append(prime)
lastadded = 1
for off in offsets:
tmp = d[(1, off)]
start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
del_mult(tmptk[off], start, prime)
# time to add remaining primes
# if lastadded == 1, remove last element and start adding them from tk1
# this way we don't need an "if" within the last while
if lastadded == 1:
p.pop()
# now complete for every other possible prime
while pos < len(tk1):
cpos = const * pos
if tk1[pos]: p.append(cpos + 1)
if tk7[pos]: p.append(cpos + 7)
if tk11[pos]: p.append(cpos + 11)
if tk13[pos]: p.append(cpos + 13)
if tk17[pos]: p.append(cpos + 17)
if tk19[pos]: p.append(cpos + 19)
if tk23[pos]: p.append(cpos + 23)
if tk29[pos]: p.append(cpos + 29)
pos += 1
# remove exceeding if present
pos = len(p) - 1
while p[pos] > N:
pos -= 1
if pos < len(p) - 1:
del p[pos+1:]
# return p list
return p
def sieveOfEratosthenes(n):
"""sieveOfEratosthenes(n): return the list of the primes < n."""
# Code from: <dickinsm@gmail.com>, Nov 30 2006
# http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
if n <= 2:
return []
sieve = range(3, n, 2)
top = len(sieve)
for si in sieve:
if si:
bottom = (si*si - 3) // 2
if bottom >= top:
break
sieve[bottom::si] = [0] * -((bottom - top) // si)
return [2] + [el for el in sieve if el]
def sieveOfAtkin(end):
"""sieveOfAtkin(end): return a list of all the prime numbers <end
using the Sieve of Atkin."""
# Code by Steve Krenzel, <Sgk284@gmail.com>, improved
# Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
# Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
assert end > 0
lng = ((end-1) // 2)
sieve = [False] * (lng + 1)
x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
for xd in xrange(4, 8*x_max + 2, 8):
x2 += xd
y_max = int(sqrt(end-x2))
n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
if not (n & 1):
n -= n_diff
n_diff -= 2
for d in xrange((n_diff - 1) << 1, -1, -8):
m = n % 12
if m == 1 or m == 5:
m = n >> 1
sieve[m] = not sieve[m]
n -= d
x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
for xd in xrange(3, 6 * x_max + 2, 6):
x2 += xd
y_max = int(sqrt(end-x2))
n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
if not(n & 1):
n -= n_diff
n_diff -= 2
for d in xrange((n_diff - 1) << 1, -1, -8):
if n % 12 == 7:
m = n >> 1
sieve[m] = not sieve[m]
n -= d
x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
for x in xrange(1, x_max + 1):
x2 += xd
xd += 6
if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
for d in xrange(n_diff, y_min, -8):
if n % 12 == 11:
m = n >> 1
sieve[m] = not sieve[m]
n += d
primes = [2, 3]
if end <= 3:
return primes[:max(0,end-2)]
for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
if sieve[n]:
primes.append((n << 1) + 1)
aux = (n << 1) + 1
aux *= aux
for k in xrange(aux, end, 2 * aux):
sieve[k >> 1] = False
s = int(sqrt(end)) + 1
if s % 2 == 0:
s += 1
primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])
return primes
def ambi_sieve_plain(n):
s = range(3, n, 2)
for m in xrange(3, int(n**0.5)+1, 2):
if s[(m-3)/2]:
for t in xrange((m*m-3)/2,(n>>1)-1,m):
s[t]=0
return [2]+[t for t in s if t>0]
def sundaram3(max_n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
numbers = range(3, max_n+1, 2)
half = (max_n)//2
initial = 4
for step in xrange(3, max_n+1, 2):
for i in xrange(initial, half, step):
numbers[i-1] = 0
initial += 2*(step+1)
if initial > half:
return [2] + filter(None, numbers)
################################################################################
# Using Numpy:
def ambi_sieve(n):
# http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
s = np.arange(3, n, 2)
for m in xrange(3, int(n ** 0.5)+1, 2):
if s[(m-3)/2]:
s[(m*m-3)/2::m]=0
return np.r_[2, s[s>0]]
def primesfrom3to(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a array of primes, p < n """
assert n>=2
sieve = np.ones(n/2, dtype=np.bool)
for i in xrange(3,int(n**0.5)+1,2):
if sieve[i/2]:
sieve[i*i/2::i] = False
return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]
def primesfrom2to(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns a array of primes, 2 <= p < n """
sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
sieve[0] = False
for i in xrange(int(n**0.5)/3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)/3) ::2*k] = False
sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]
if __name__=='__main__':
import itertools
import sys
def test(f1,f2,num):
print('Testing {f1} and {f2} return same results'.format(
f1=f1.func_name,
f2=f2.func_name))
if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))
n=1000000
test(sieveOfAtkin,sieveOfEratosthenes,n)
test(sieveOfAtkin,ambi_sieve,n)
test(sieveOfAtkin,ambi_sieve_plain,n)
test(sieveOfAtkin,sundaram3,n)
test(sieveOfAtkin,sieve_wheel_30,n)
test(sieveOfAtkin,primesfrom3to,n)
test(sieveOfAtkin,primesfrom2to,n)
test(sieveOfAtkin,rwh_primes,n)
test(sieveOfAtkin,rwh_primes1,n)
test(sieveOfAtkin,rwh_primes2,n)
运行脚本会测试所有实现都给出相同的结果。
回答 1
更快,更明智的纯Python代码:
def primes(n):
""" Returns a list of primes < n """
sieve = [True] * n
for i in range(3,int(n**0.5)+1,2):
if sieve[i]:
sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
return [2] + [i for i in range(3,n,2) if sieve[i]]
或从半筛开始
def primes1(n):
""" Returns a list of primes < n """
sieve = [True] * (n//2)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = [False] * ((n-i*i-1)//(2*i)+1)
return [2] + [2*i+1 for i in range(1,n//2) if sieve[i]]
更快,更明智的内存numpy代码:
import numpy
def primesfrom3to(n):
""" Returns a array of primes, 3 <= p < n """
sieve = numpy.ones(n//2, dtype=numpy.bool)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = False
return 2*numpy.nonzero(sieve)[0][1::]+1
从三分之一的筛子开始的更快的变化:
import numpy
def primesfrom2to(n):
""" Input n>=6, Returns a array of primes, 2 <= p < n """
sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
for i in range(1,int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k//3 ::2*k] = False
sieve[k*(k-2*(i&1)+4)//3::2*k] = False
return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]
上述代码的(难编码)纯python版本为:
def primes2(n):
""" Input n>=6, Returns a list of primes, 2 <= p < n """
n, correction = n-n%6+6, 2-(n%6>1)
sieve = [True] * (n//3)
for i in range(1,int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k//3 ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
不幸的是,纯python并没有采用更简单,更快速的numpy方式进行赋值,并且len()
像in [False]*len(sieve[((k*k)//3)::2*k])
中那样在循环内调用太慢了。因此,我不得不即兴改正输入(避免更多的数学运算),并做一些极端的(令人痛苦的)数学魔术。
我个人认为numpy(已被广泛使用)不是Python标准库的一部分,而Python开发人员似乎完全忽略了语法和速度方面的改进,这是一个遗憾。
回答 2
有从Python食谱一个漂亮整洁的样品这里 -建议对URL最快的版本是:
import itertools
def erat2( ):
D = { }
yield 2
for q in itertools.islice(itertools.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = p + q
while x in D or not (x&1):
x += p
D[x] = p
这样就可以
def get_primes_erat(n):
return list(itertools.takewhile(lambda p: p<n, erat2()))
使用pri.py中的这段代码在shell提示符下(我喜欢这样做)进行测量,我观察到:
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes(1000000)'
10 loops, best of 3: 1.69 sec per loop
$ python2.5 -mtimeit -s'import pri' 'pri.get_primes_erat(1000000)'
10 loops, best of 3: 673 msec per loop
因此,看起来Cookbook解决方案的速度是以前的两倍。
回答 3
我认为使用Sundaram的Sieve打破了纯Python的记录:
def sundaram3(max_n):
numbers = range(3, max_n+1, 2)
half = (max_n)//2
initial = 4
for step in xrange(3, max_n+1, 2):
for i in xrange(initial, half, step):
numbers[i-1] = 0
initial += 2*(step+1)
if initial > half:
return [2] + filter(None, numbers)
对比:
C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.get_primes_erat(1000000)"
10 loops, best of 3: 710 msec per loop
C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.daniel_sieve_2(1000000)"
10 loops, best of 3: 435 msec per loop
C:\USERS>python -m timeit -n10 -s "import get_primes" "get_primes.sundaram3(1000000)"
10 loops, best of 3: 327 msec per loop
回答 4
该算法速度很快,但存在严重缺陷:
>>> sorted(get_primes(530))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 527, 529]
>>> 17*31
527
>>> 23*23
529
您假设这numbers.pop()
将返回集合中的最小数字,但是完全不能保证。集是无序的,并且pop()
删除并返回任意元素,因此不能用于从其余数字中选择下一个素数。
回答 5
对于具有足够大N的真正最快的解决方案,将是下载预先计算的素数列表,将其存储为元组,然后执行以下操作:
for pos,i in enumerate(primes):
if i > N:
print primes[:pos]
如果N > primes[-1]
只是这样,则可以计算更多的质数并将新列表保存在您的代码中,因此下一次同样快。
始终在框外思考。
回答 6
如果您不想重新发明轮子,可以安装符号数学库sympy(是的,它与Python 3兼容)
pip install sympy
并使用primerange功能
from sympy import sieve
primes = list(sieve.primerange(1, 10**6))
回答 7
如果您接受itertools但不接受numpy,则这是针对Python 3的rwh_primes2的改编版,其在我的计算机上的运行速度约为以前的两倍。唯一的实质性更改是使用字节数组而不是布尔值列表,并使用compress而不是列表推导来构建最终列表。(如果可以的话,我将其添加为类似moarningsun的评论。)
import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
""" Input n>=6, Returns a list of primes, 2 <= p < n """
zero = bytearray([False])
size = n//3 + (n % 6 == 2)
sieve = bytearray([True]) * size
sieve[0] = False
for i in range(int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
start = (k*k+4*k-2*k*(i&1))//3
sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
sieve[ start ::2*k]=zero*((size - start - 1) // (2 * k) + 1)
ans = [2,3]
poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
ans.extend(compress(poss, sieve))
return ans
比较:
>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674
和
>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801
回答 8
编写自己的主要发现代码很有启发性,但是手头有一个快速可靠的库也很有用。我围绕C ++库primesieve编写了一个包装器,将其命名为primesieve-python
尝试一下 pip install primesieve
import primesieve
primes = primesieve.generate_primes(10**8)
我很好奇看到速度比较。
回答 9
这是最快的功能之一的两个更新版本(纯Python 3.6),
from itertools import compress
def rwh_primes1v1(n):
""" Returns a list of primes < n for n > 2 """
sieve = bytearray([True]) * (n//2)
for i in range(3,int(n**0.5)+1,2):
if sieve[i//2]:
sieve[i*i//2::i] = bytearray((n-i*i-1)//(2*i)+1)
return [2,*compress(range(3,n,2), sieve[1:])]
def rwh_primes1v2(n):
""" Returns a list of primes < n for n > 2 """
sieve = bytearray([True]) * (n//2+1)
for i in range(1,int(n**0.5)//2+1):
if sieve[i]:
sieve[2*i*(i+1)::2*i+1] = bytearray((n//2-2*i*(i+1))//(2*i+1)+1)
return [2,*compress(range(3,n,2), sieve[1:])]
回答 10
在N <9,080,191的假设下确定性实施Miller-Rabin素数检验
import sys
import random
def miller_rabin_pass(a, n):
d = n - 1
s = 0
while d % 2 == 0:
d >>= 1
s += 1
a_to_power = pow(a, d, n)
if a_to_power == 1:
return True
for i in xrange(s-1):
if a_to_power == n - 1:
return True
a_to_power = (a_to_power * a_to_power) % n
return a_to_power == n - 1
def miller_rabin(n):
for a in [2, 3, 37, 73]:
if not miller_rabin_pass(a, n):
return False
return True
n = int(sys.argv[1])
primes = [2]
for p in range(3,n,2):
if miller_rabin(p):
primes.append(p)
print len(primes)
根据Wikipedia上的文章(http://en.wikipedia.org/wiki/Miller–Rabin_primality_test),测试N <9,080,191的a = 2,3,37和73足以确定N是否为复合值。
然后,我从此处找到的原始Miller-Rabin测试的概率实现中改编了源代码:http : //en.literateprograms.org/Miller-Rabin_primality_test_(Python)
回答 11
如果您可以控制N,则列出所有素数的最快方法是预先计算它们。说真的 预计算是一种被忽略的优化方法。
回答 12
这是我通常用于在Python中生成素数的代码:
$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)'
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt
def sieve(size):
prime=[True]*size
rng=xrange
limit=int(sqrt(size))
for i in rng(3,limit+1,+2):
if prime[i]:
prime[i*i::+i]=[False]*len(prime[i*i::+i])
return [2]+[i for i in rng(3,size,+2) if prime[i]]
if __name__=='__main__':
print sieve(100)
它无法与此处发布的更快的解决方案竞争,但至少它是纯python。
感谢您发布此问题。今天我真的学到了很多东西。
回答 13
对于最快的代码,numpy解决方案是最好的。不过,出于纯粹的学术原因,我要发布我的纯python版本,该版本比上面发布的食谱版本快50%。由于我将整个列表存储在内存中,因此您需要足够的空间来容纳所有内容,但它似乎可以很好地扩展。
def daniel_sieve_2(maxNumber):
"""
Given a number, returns all numbers less than or equal to
that number which are prime.
"""
allNumbers = range(3, maxNumber+1, 2)
for mIndex, number in enumerate(xrange(3, maxNumber+1, 2)):
if allNumbers[mIndex] == 0:
continue
# now set all multiples to 0
for index in xrange(mIndex+number, (maxNumber-3)/2+1, number):
allNumbers[index] = 0
return [2] + filter(lambda n: n!=0, allNumbers)
结果:
>>>mine = timeit.Timer("daniel_sieve_2(1000000)",
... "from sieves import daniel_sieve_2")
>>>prev = timeit.Timer("get_primes_erat(1000000)",
... "from sieves import get_primes_erat")
>>>print "Mine: {0:0.4f} ms".format(min(mine.repeat(3, 1))*1000)
Mine: 428.9446 ms
>>>print "Previous Best {0:0.4f} ms".format(min(prev.repeat(3, 1))*1000)
Previous Best 621.3581 ms
回答 14
使用Numpy的半筛的实现略有不同:
导入数学 导入numpy def prime6(最高): primes = numpy.arange(3,最高+1,2) isprime = numpy.ones((最多1)/ 2,dtype = bool) 对于素数[:int(math.sqrt(upto))]: 如果isprime [(factor-2)/ 2]:isprime [(factor * 3-2)/ 2:(upto-1)/ 2:factor] = 0 返回numpy.insert(primes [isprime],0,2)
有人可以将此与其他时间进行比较吗?在我的机器上,它看起来可以与其他Numpy半筛媲美。
回答 15
全部都经过编写和测试。因此,无需重新发明轮子。
python -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"
给我们打破了12.2毫秒的记录!
10 loops, best of 10: 12.2 msec per loop
如果这还不够快,您可以尝试PyPy:
pypy -m timeit -r10 -s"from sympy import sieve" "primes = list(sieve.primerange(1, 10**6))"
结果是:
10 loops, best of 10: 2.03 msec per loop
247次投票的答案列出了15.9毫秒的最佳解决方案。比较一下!!!
回答 16
我测试了一些unutbu的函数,用饥饿的数百万来计算
获奖者是使用numpy库的函数,
注意:进行内存利用率测试也很有趣:)
样例代码
#!/usr/bin/env python
import lib
import timeit
import sys
import math
import datetime
import prettyplotlib as ppl
import numpy as np
import matplotlib.pyplot as plt
from prettyplotlib import brewer2mpl
primenumbers_gen = [
'sieveOfEratosthenes',
'ambi_sieve',
'ambi_sieve_plain',
'sundaram3',
'sieve_wheel_30',
'primesfrom3to',
'primesfrom2to',
'rwh_primes',
'rwh_primes1',
'rwh_primes2',
]
def human_format(num):
# /programming/579310/formatting-long-numbers-as-strings-in-python?answertab=active#tab-top
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
# add more suffixes if you need them
return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
if __name__=='__main__':
# Vars
n = 10000000 # number itereration generator
nbcol = 5 # For decompose prime number generator
nb_benchloop = 3 # Eliminate false positive value during the test (bench average time)
datetimeformat = '%Y-%m-%d %H:%M:%S.%f'
config = 'from __main__ import n; import lib'
primenumbers_gen = {
'sieveOfEratosthenes': {'color': 'b'},
'ambi_sieve': {'color': 'b'},
'ambi_sieve_plain': {'color': 'b'},
'sundaram3': {'color': 'b'},
'sieve_wheel_30': {'color': 'b'},
# # # 'primesfrom2to': {'color': 'b'},
'primesfrom3to': {'color': 'b'},
# 'rwh_primes': {'color': 'b'},
# 'rwh_primes1': {'color': 'b'},
'rwh_primes2': {'color': 'b'},
}
# Get n in command line
if len(sys.argv)>1:
n = int(sys.argv[1])
step = int(math.ceil(n / float(nbcol)))
nbs = np.array([i * step for i in range(1, int(nbcol) + 1)])
set2 = brewer2mpl.get_map('Paired', 'qualitative', 12).mpl_colors
print datetime.datetime.now().strftime(datetimeformat)
print("Compute prime number to %(n)s" % locals())
print("")
results = dict()
for pgen in primenumbers_gen:
results[pgen] = dict()
benchtimes = list()
for n in nbs:
t = timeit.Timer("lib.%(pgen)s(n)" % locals(), setup=config)
execute_times = t.repeat(repeat=nb_benchloop,number=1)
benchtime = np.mean(execute_times)
benchtimes.append(benchtime)
results[pgen] = {'benchtimes':np.array(benchtimes)}
fig, ax = plt.subplots(1)
plt.ylabel('Computation time (in second)')
plt.xlabel('Numbers computed')
i = 0
for pgen in primenumbers_gen:
bench = results[pgen]['benchtimes']
avgs = np.divide(bench,nbs)
avg = np.average(bench, weights=nbs)
# Compute linear regression
A = np.vstack([nbs, np.ones(len(nbs))]).T
a, b = np.linalg.lstsq(A, nbs*avgs)[0]
# Plot
i += 1
#label="%(pgen)s" % locals()
#ppl.plot(nbs, nbs*avgs, label=label, lw=1, linestyle='--', color=set2[i % 12])
label="%(pgen)s avg" % locals()
ppl.plot(nbs, a * nbs + b, label=label, lw=2, color=set2[i % 12])
print datetime.datetime.now().strftime(datetimeformat)
ppl.legend(ax, loc='upper left', ncol=4)
# Change x axis label
ax.get_xaxis().get_major_formatter().set_scientific(False)
fig.canvas.draw()
labels = [human_format(int(item.get_text())) for item in ax.get_xticklabels()]
ax.set_xticklabels(labels)
ax = plt.gca()
plt.show()
回答 17
对于Python 3
def rwh_primes2(n):
correction = (n%6>1)
n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
sieve = [True] * (n//3)
sieve[0] = False
for i in range(int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ ((k*k)//3) ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
回答 18
纯Python中最快的基本筛:
from itertools import compress
def half_sieve(n):
"""
Returns a list of prime numbers less than `n`.
"""
if n <= 2:
return []
sieve = bytearray([True]) * (n // 2)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i // 2]:
sieve[i * i // 2::i] = bytearray((n - i * i - 1) // (2 * i) + 1)
primes = list(compress(range(1, n, 2), sieve))
primes[0] = 2
return primes
我优化了Eratosthenes筛的速度和内存。
基准测试
from time import clock
import platform
def benchmark(iterations, limit):
start = clock()
for x in range(iterations):
half_sieve(limit)
end = clock() - start
print(f'{end/iterations:.4f} seconds for primes < {limit}')
if __name__ == '__main__':
print(platform.python_version())
print(platform.platform())
print(platform.processor())
it = 10
for pw in range(4, 9):
benchmark(it, 10**pw)
输出量
>>> 3.6.7
>>> Windows-10-10.0.17763-SP0
>>> Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
>>> 0.0003 seconds for primes < 10000
>>> 0.0021 seconds for primes < 100000
>>> 0.0204 seconds for primes < 1000000
>>> 0.2389 seconds for primes < 10000000
>>> 2.6702 seconds for primes < 100000000
回答 19
第一次使用python,因此我在其中使用的某些方法似乎有点麻烦。我只是将我的c ++代码直接转换为python,这就是我所拥有的(尽管在python中有点slowww)
#!/usr/bin/env python
import time
def GetPrimes(n):
Sieve = [1 for x in xrange(n)]
Done = False
w = 3
while not Done:
for q in xrange (3, n, 2):
Prod = w*q
if Prod < n:
Sieve[Prod] = 0
else:
break
if w > (n/2):
Done = True
w += 2
return Sieve
start = time.clock()
d = 10000000
Primes = GetPrimes(d)
count = 1 #This is for 2
for x in xrange (3, d, 2):
if Primes[x]:
count+=1
elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"
pythonw Primes.py
在12.799119秒内找到664579质数!
#!/usr/bin/env python
import time
def GetPrimes2(n):
Sieve = [1 for x in xrange(n)]
for q in xrange (3, n, 2):
k = q
for y in xrange(k*3, n, k*2):
Sieve[y] = 0
return Sieve
start = time.clock()
d = 10000000
Primes = GetPrimes2(d)
count = 1 #This is for 2
for x in xrange (3, d, 2):
if Primes[x]:
count+=1
elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"
pythonw Primes2.py
在10.230172秒内找到664579质数!
#!/usr/bin/env python
import time
def GetPrimes3(n):
Sieve = [1 for x in xrange(n)]
for q in xrange (3, n, 2):
k = q
for y in xrange(k*k, n, k << 1):
Sieve[y] = 0
return Sieve
start = time.clock()
d = 10000000
Primes = GetPrimes3(d)
count = 1 #This is for 2
for x in xrange (3, d, 2):
if Primes[x]:
count+=1
elapsed = (time.clock() - start)
print "\nFound", count, "primes in", elapsed, "seconds!\n"
Python Primes2.py
在7.113776秒内发现664579质数!
回答 20
我知道比赛已经结束了几年。…
尽管如此,这是我对纯python主筛的建议,它基于在处理向前的筛子时通过使用适当的步骤来省略2、3和5的倍数。但是,对于N <10 ^ 9而言,它实际上要比@Robert William Hanks高级解决方案rwh_primes2和rwh_primes1慢。通过使用高于1.5 * 10 ^ 8的ctypes.c_ushort筛子数组,可以以某种方式适应内存限制。
10 ^ 6
$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(1000000)” 10个循环,每个循环最好3:46.7毫秒
比较:$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(1000000)” 10个循环,最好是3个循环:每个循环要进行43.2毫秒比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2 (1000000)“ 10个循环,最好为3:每个循环34.5毫秒
10 ^ 7
$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(10000000)” 10个循环,每循环最好530毫秒
比较:$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(10000000)” 10个循环,最好是3个循环:494毫秒比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2 (10000000)“ 10个循环,每个循环最好3:375毫秒
10 ^ 8
$ python -mtimeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(100000000)” 10个循环,每循环最好3:5.55秒
比较:$ python -mtimeit -s“导入primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(100000000)” 10个循环,最好每个循环进行3:5.33秒进行比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2 (100000000)“ 10个循环,每循环3:3.95秒的最佳时间
10 ^ 9
$ python -mtimeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.primeSieveSeq(1000000000)” 10个循环,最好3个循环:每个循环61.2秒
比较:$ python -mtimeit -n 3 -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes1(1000000000)” 3个循环,最佳3:97.8 每个循环秒
比较:$ python -m timeit -s“ import primeSieveSpeedComp”“ primeSieveSpeedComp.rwh_primes2(1000000000)” 10个循环,最好3个循环:每个循环41.9秒
您可以将以下代码复制到ubuntus primeSieveSpeedComp中,以查看此测试。
def primeSieveSeq(MAX_Int):
if MAX_Int > 5*10**8:
import ctypes
int16Array = ctypes.c_ushort * (MAX_Int >> 1)
sieve = int16Array()
#print 'uses ctypes "unsigned short int Array"'
else:
sieve = (MAX_Int >> 1) * [False]
#print 'uses python list() of long long int'
if MAX_Int < 10**8:
sieve[4::3] = [True]*((MAX_Int - 8)/6+1)
sieve[12::5] = [True]*((MAX_Int - 24)/10+1)
r = [2, 3, 5]
n = 0
for i in xrange(int(MAX_Int**0.5)/30+1):
n += 3
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 2
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 1
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 2
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 1
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 2
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 3
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
n += 1
if not sieve[n]:
n2 = (n << 1) + 1
r.append(n2)
n2q = (n2**2) >> 1
sieve[n2q::n2] = [True]*(((MAX_Int >> 1) - n2q - 1) / n2 + 1)
if MAX_Int < 10**8:
return [2, 3, 5]+[(p << 1) + 1 for p in [n for n in xrange(3, MAX_Int >> 1) if not sieve[n]]]
n = n >> 1
try:
for i in xrange((MAX_Int-2*n)/30 + 1):
n += 3
if not sieve[n]:
r.append((n << 1) + 1)
n += 2
if not sieve[n]:
r.append((n << 1) + 1)
n += 1
if not sieve[n]:
r.append((n << 1) + 1)
n += 2
if not sieve[n]:
r.append((n << 1) + 1)
n += 1
if not sieve[n]:
r.append((n << 1) + 1)
n += 2
if not sieve[n]:
r.append((n << 1) + 1)
n += 3
if not sieve[n]:
r.append((n << 1) + 1)
n += 1
if not sieve[n]:
r.append((n << 1) + 1)
except:
pass
return r
回答 21
这是Eratosthenes筛子的numpy版本,具有良好的复杂性(比对长度为n的数组排序要低)和矢量化。与@unutbu相比,此速度与使用46微微秒的软件包查找所有小于一百万的质数的速度一样快。
import numpy as np
def generate_primes(n):
is_prime = np.ones(n+1,dtype=bool)
is_prime[0:2] = False
for i in range(int(n**0.5)+1):
if is_prime[i]:
is_prime[i**2::i]=False
return np.where(is_prime)[0]
时间:
import time
for i in range(2,10):
timer =time.time()
generate_primes(10**i)
print('n = 10^',i,' time =', round(time.time()-timer,6))
>> n = 10^ 2 time = 5.6e-05
>> n = 10^ 3 time = 6.4e-05
>> n = 10^ 4 time = 0.000114
>> n = 10^ 5 time = 0.000593
>> n = 10^ 6 time = 0.00467
>> n = 10^ 7 time = 0.177758
>> n = 10^ 8 time = 1.701312
>> n = 10^ 9 time = 19.322478
回答 22
我已经更新了许多Python 3代码,并将其扔到了perfplot(我的一个项目)上,以查看哪个实际上最快。事实证明,对于大蛋糕n
,primesfrom{2,3}to
可以选择蛋糕:
复制剧情的代码:
import perfplot
from math import sqrt, ceil
import numpy as np
import sympy
def rwh_primes(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a list of primes < n """
sieve = [True] * n
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i]:
sieve[i * i::2 * i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
return [2] + [i for i in range(3, n, 2) if sieve[i]]
def rwh_primes1(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns a list of primes < n """
sieve = [True] * (n // 2)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i // 2]:
sieve[i * i // 2::i] = [False] * ((n - i * i - 1) // (2 * i) + 1)
return [2] + [2 * i + 1 for i in range(1, n // 2) if sieve[i]]
def rwh_primes2(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
"""Input n>=6, Returns a list of primes, 2 <= p < n"""
assert n >= 6
correction = n % 6 > 1
n = {0: n, 1: n - 1, 2: n + 4, 3: n + 3, 4: n + 2, 5: n + 1}[n % 6]
sieve = [True] * (n // 3)
sieve[0] = False
for i in range(int(n ** 0.5) // 3 + 1):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[((k * k) // 3)::2 * k] = [False] * (
(n // 6 - (k * k) // 6 - 1) // k + 1
)
sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = [False] * (
(n // 6 - (k * k + 4 * k - 2 * k * (i & 1)) // 6 - 1) // k + 1
)
return [2, 3] + [3 * i + 1 | 1 for i in range(1, n // 3 - correction) if sieve[i]]
def sieve_wheel_30(N):
# http://zerovolt.com/?p=88
""" Returns a list of primes <= N using wheel criterion 2*3*5 = 30
Copyright 2009 by zerovolt.com
This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com."""
__smallp = (
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
)
# wheel = (2, 3, 5)
const = 30
if N < 2:
return []
if N <= const:
pos = 0
while __smallp[pos] <= N:
pos += 1
return list(__smallp[:pos])
# make the offsets list
offsets = (7, 11, 13, 17, 19, 23, 29, 1)
# prepare the list
p = [2, 3, 5]
dim = 2 + N // const
tk1 = [True] * dim
tk7 = [True] * dim
tk11 = [True] * dim
tk13 = [True] * dim
tk17 = [True] * dim
tk19 = [True] * dim
tk23 = [True] * dim
tk29 = [True] * dim
tk1[0] = False
# help dictionary d
# d[a , b] = c ==> if I want to find the smallest useful multiple of (30*pos)+a
# on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
# in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
d = {}
for x in offsets:
for y in offsets:
res = (x * y) % const
if res in offsets:
d[(x, res)] = y
# another help dictionary: gives tkx calling tmptk[x]
tmptk = {1: tk1, 7: tk7, 11: tk11, 13: tk13, 17: tk17, 19: tk19, 23: tk23, 29: tk29}
pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
# inner functions definition
def del_mult(tk, start, step):
for k in range(start, len(tk), step):
tk[k] = False
# end of inner functions definition
cpos = const * pos
while prime < stop:
# 30k + 7
if tk7[pos]:
prime = cpos + 7
p.append(prime)
lastadded = 7
for off in offsets:
tmp = d[(7, off)]
start = (
(pos + prime)
if off == 7
else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# 30k + 11
if tk11[pos]:
prime = cpos + 11
p.append(prime)
lastadded = 11
for off in offsets:
tmp = d[(11, off)]
start = (
(pos + prime)
if off == 11
else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# 30k + 13
if tk13[pos]:
prime = cpos + 13
p.append(prime)
lastadded = 13
for off in offsets:
tmp = d[(13, off)]
start = (
(pos + prime)
if off == 13
else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# 30k + 17
if tk17[pos]:
prime = cpos + 17
p.append(prime)
lastadded = 17
for off in offsets:
tmp = d[(17, off)]
start = (
(pos + prime)
if off == 17
else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# 30k + 19
if tk19[pos]:
prime = cpos + 19
p.append(prime)
lastadded = 19
for off in offsets:
tmp = d[(19, off)]
start = (
(pos + prime)
if off == 19
else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# 30k + 23
if tk23[pos]:
prime = cpos + 23
p.append(prime)
lastadded = 23
for off in offsets:
tmp = d[(23, off)]
start = (
(pos + prime)
if off == 23
else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# 30k + 29
if tk29[pos]:
prime = cpos + 29
p.append(prime)
lastadded = 29
for off in offsets:
tmp = d[(29, off)]
start = (
(pos + prime)
if off == 29
else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# now we go back to top tk1, so we need to increase pos by 1
pos += 1
cpos = const * pos
# 30k + 1
if tk1[pos]:
prime = cpos + 1
p.append(prime)
lastadded = 1
for off in offsets:
tmp = d[(1, off)]
start = (
(pos + prime)
if off == 1
else (prime * (const * pos + tmp)) // const
)
del_mult(tmptk[off], start, prime)
# time to add remaining primes
# if lastadded == 1, remove last element and start adding them from tk1
# this way we don't need an "if" within the last while
if lastadded == 1:
p.pop()
# now complete for every other possible prime
while pos < len(tk1):
cpos = const * pos
if tk1[pos]:
p.append(cpos + 1)
if tk7[pos]:
p.append(cpos + 7)
if tk11[pos]:
p.append(cpos + 11)
if tk13[pos]:
p.append(cpos + 13)
if tk17[pos]:
p.append(cpos + 17)
if tk19[pos]:
p.append(cpos + 19)
if tk23[pos]:
p.append(cpos + 23)
if tk29[pos]:
p.append(cpos + 29)
pos += 1
# remove exceeding if present
pos = len(p) - 1
while p[pos] > N:
pos -= 1
if pos < len(p) - 1:
del p[pos + 1 :]
# return p list
return p
def sieve_of_eratosthenes(n):
"""sieveOfEratosthenes(n): return the list of the primes < n."""
# Code from: <dickinsm@gmail.com>, Nov 30 2006
# http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
if n <= 2:
return []
sieve = list(range(3, n, 2))
top = len(sieve)
for si in sieve:
if si:
bottom = (si * si - 3) // 2
if bottom >= top:
break
sieve[bottom::si] = [0] * -((bottom - top) // si)
return [2] + [el for el in sieve if el]
def sieve_of_atkin(end):
"""return a list of all the prime numbers <end using the Sieve of Atkin."""
# Code by Steve Krenzel, <Sgk284@gmail.com>, improved
# Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
# Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
assert end > 0
lng = (end - 1) // 2
sieve = [False] * (lng + 1)
x_max, x2, xd = int(sqrt((end - 1) / 4.0)), 0, 4
for xd in range(4, 8 * x_max + 2, 8):
x2 += xd
y_max = int(sqrt(end - x2))
n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
if not (n & 1):
n -= n_diff
n_diff -= 2
for d in range((n_diff - 1) << 1, -1, -8):
m = n % 12
if m == 1 or m == 5:
m = n >> 1
sieve[m] = not sieve[m]
n -= d
x_max, x2, xd = int(sqrt((end - 1) / 3.0)), 0, 3
for xd in range(3, 6 * x_max + 2, 6):
x2 += xd
y_max = int(sqrt(end - x2))
n, n_diff = x2 + y_max * y_max, (y_max << 1) - 1
if not (n & 1):
n -= n_diff
n_diff -= 2
for d in range((n_diff - 1) << 1, -1, -8):
if n % 12 == 7:
m = n >> 1
sieve[m] = not sieve[m]
n -= d
x_max, y_min, x2, xd = int((2 + sqrt(4 - 8 * (1 - end))) / 4), -1, 0, 3
for x in range(1, x_max + 1):
x2 += xd
xd += 6
if x2 >= end:
y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
n, n_diff = ((x * x + x) << 1) - 1, (((x - 1) << 1) - 2) << 1
for d in range(n_diff, y_min, -8):
if n % 12 == 11:
m = n >> 1
sieve[m] = not sieve[m]
n += d
primes = [2, 3]
if end <= 3:
return primes[: max(0, end - 2)]
for n in range(5 >> 1, (int(sqrt(end)) + 1) >> 1):
if sieve[n]:
primes.append((n << 1) + 1)
aux = (n << 1) + 1
aux *= aux
for k in range(aux, end, 2 * aux):
sieve[k >> 1] = False
s = int(sqrt(end)) + 1
if s % 2 == 0:
s += 1
primes.extend([i for i in range(s, end, 2) if sieve[i >> 1]])
return primes
def ambi_sieve_plain(n):
s = list(range(3, n, 2))
for m in range(3, int(n ** 0.5) + 1, 2):
if s[(m - 3) // 2]:
for t in range((m * m - 3) // 2, (n >> 1) - 1, m):
s[t] = 0
return [2] + [t for t in s if t > 0]
def sundaram3(max_n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
numbers = range(3, max_n + 1, 2)
half = (max_n) // 2
initial = 4
for step in range(3, max_n + 1, 2):
for i in range(initial, half, step):
numbers[i - 1] = 0
initial += 2 * (step + 1)
if initial > half:
return [2] + filter(None, numbers)
# Using Numpy:
def ambi_sieve(n):
# http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
s = np.arange(3, n, 2)
for m in range(3, int(n ** 0.5) + 1, 2):
if s[(m - 3) // 2]:
s[(m * m - 3) // 2::m] = 0
return np.r_[2, s[s > 0]]
def primesfrom3to(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Returns an array of primes, p < n """
assert n >= 2
sieve = np.ones(n // 2, dtype=np.bool)
for i in range(3, int(n ** 0.5) + 1, 2):
if sieve[i // 2]:
sieve[i * i // 2::i] = False
return np.r_[2, 2 * np.nonzero(sieve)[0][1::] + 1]
def primesfrom2to(n):
# /programming/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
""" Input n>=6, Returns an array of primes, 2 <= p < n """
assert n >= 6
sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool)
sieve[0] = False
for i in range(int(n ** 0.5) // 3 + 1):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[((k * k) // 3)::2 * k] = False
sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = False
return np.r_[2, 3, ((3 * np.nonzero(sieve)[0] + 1) | 1)]
def sympy_sieve(n):
return list(sympy.sieve.primerange(1, n))
perfplot.save(
"prime.png",
setup=lambda n: n,
kernels=[
rwh_primes,
rwh_primes1,
rwh_primes2,
sieve_wheel_30,
sieve_of_eratosthenes,
sieve_of_atkin,
# ambi_sieve_plain,
# sundaram3,
ambi_sieve,
primesfrom3to,
primesfrom2to,
sympy_sieve,
],
n_range=[2 ** k for k in range(3, 25)],
logx=True,
logy=True,
xlabel="n",
)
回答 23
我的猜测是最快所有方式中的就是对代码中的素数进行硬编码。
因此,为什么不编写一个缓慢的脚本来生成另一个包含所有数字的源文件,然后在运行实际程序时导入该源文件。
当然,仅当您在编译时知道N的上限时,此方法才有效,但是(几乎)所有项目Euler问题都是如此。
PS: 我可能错了,尽管使用硬连线素数解析源代码比首先计算它们要慢,但是据我所知Python运行于编译.pyc
文件中,因此读取所有素数不超过N的二进制数组应该很血腥在这种情况下很快。
回答 24
很抱歉打扰,但是erat2()在算法中存在严重缺陷。
在搜索下一个复合词时,我们仅需要测试奇数。q,p都是奇数;那么q + p是偶数,不需要测试,但是q + 2 * p总是奇数。这消除了while循环条件下的“ if even”测试,并节省了大约30%的运行时间。
当我们讨论它时:使用优雅的’D.pop(q,None)’获取和删除方法,而不是’if q in D:p = D [q],del D [q]’,它快两倍!至少在我的机器上(P3-1Ghz)。所以我建议这种聪明算法的实现:
def erat3( ):
from itertools import islice, count
# q is the running integer that's checked for primeness.
# yield 2 and no other even number thereafter
yield 2
D = {}
# no need to mark D[4] as we will test odd numbers only
for q in islice(count(3),0,None,2):
if q in D: # is composite
p = D[q]
del D[q]
# q is composite. p=D[q] is the first prime that
# divides it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiple of its witnesses to prepare for larger
# numbers.
x = q + p+p # next odd(!) multiple
while x in D: # skip composites
x += p+p
D[x] = p
else: # is prime
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations.
D[q*q] = q
yield q
回答 25
到目前为止,我尝试过的最快方法是基于Python Cookbookerat2
函数:
import itertools as it
def erat2a( ):
D = { }
yield 2
for q in it.islice(it.count(3), 0, None, 2):
p = D.pop(q, None)
if p is None:
D[q*q] = q
yield q
else:
x = q + 2*p
while x in D:
x += 2*p
D[x] = p
有关加速的说明,请参见此答案。
回答 26
我可能聚会晚了,但是必须为此添加我自己的代码。它占用的空间大约为n / 2,因为我们不需要存储偶数,而且我还使用了bitarray python模块,从而进一步大大减少了内存消耗,并使所有素数的计算能力高达1,000,000,000
from bitarray import bitarray
def primes_to(n):
size = n//2
sieve = bitarray(size)
sieve.setall(1)
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
sieve[(i+i*val)::val] = 0
return [2] + [2*i+1 for i, v in enumerate(sieve) if v and i > 0]
python -m timeit -n10 -s "import euler" "euler.primes_to(1000000000)"
10 loops, best of 3: 46.5 sec per loop
这是在64位2.4GHZ MAC OSX 10.8.3上运行的
回答 27
随着时间的推移,我收集了几个质数筛。我的计算机上最快的是:
from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
a = [True] * limit
a[0] = a[1] = False
#a[2] = True
for n in xrange(4, limit, 2):
a[n] = False
root_limit = int(limit**.5)+1
for i in xrange(3,root_limit):
if a[i]:
for n in xrange(i*i, limit, 2*i):
a[n] = False
return a
LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s
回答 28
我对这个问题的回答很慢,但这似乎很有趣。我正在使用numpy,这可能会作弊,我怀疑这种方法是最快的,但应该清楚。它筛选仅引用其索引的布尔数组,并从所有True值的索引中引出质数。无需取模。
import numpy as np
def ajs_primes3a(upto):
mat = np.ones((upto), dtype=bool)
mat[0] = False
mat[1] = False
mat[4::2] = False
for idx in range(3, int(upto ** 0.5)+1, 2):
mat[idx*2::idx] = False
return np.where(mat == True)[0]
回答 29
这是一种有趣的技术,可以使用python的列表推导来生成质数(但不是最有效的):
noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]
您可以在此处找到示例和一些说明