问题:如何判断tensorflow是否在python shell中使用gpu加速?
我已经在ubuntu 16.04中使用第二个答案在 ubuntu的内置apt cuda安装中安装了tensorflow 。
现在我的问题是如何测试tensorflow是否真的在使用gpu?我有一个gtx 960m gpu。当我import tensorflow
这是输出
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
这个输出足以检查tensorflow是否正在使用gpu吗?
I have installed tensorflow in my ubuntu 16.04 using the second answer here with ubuntu’s builtin apt cuda installation.
Now my question is how can I test if tensorflow is really using gpu? I have a gtx 960m gpu. When I import tensorflow
this is the output
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
Is this output enough to check if tensorflow is using gpu ?
回答 0
不,我认为“开放式CUDA库”不足以说明问题,因为图形的不同节点可能位于不同的设备上。
要找出使用哪个设备,您可以启用日志设备放置,如下所示:
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
检查您的控制台是否有这种类型的输出。
No, I don’t think “open CUDA library” is enough to tell, because different nodes of the graph may be on different devices.
To find out which device is used, you can enable log device placement like this:
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Check your console for this type of output.
回答 1
除了使用sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
其他答案以及TensorFlow官方文档中概述的方法外,您还可以尝试将计算分配给gpu,看看是否有错误。
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
这里
- “ / cpu:0”:您计算机的CPU。
- “ / gpu:0”:计算机的GPU(如果有)。
如果您有一个gpu并可以使用它,您将看到结果。否则,您将看到堆栈跟踪很长的错误。最后,您将获得以下内容:
无法将设备分配给节点“ MatMul”:无法满足显式设备规范“ / device:GPU:0”,因为在此过程中未注册与该规范匹配的设备
最近,一些有用的功能出现在TF中:
您还可以在会话中检查可用设备:
with tf.Session() as sess:
devices = sess.list_devices()
devices
会给你类似的东西
[_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:CPU:0, CPU, -1, 4670268618893924978),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 6127825144471676437),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 16148453971365832732),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 10003582050679337480),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 5678397037036584928)
Apart from using sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
which is outlined in other answers as well as in the official TensorFlow documentation, you can try to assign a computation to the gpu and see whether you have an error.
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
Here
- “/cpu:0”: The CPU of your machine.
- “/gpu:0”: The GPU of your machine, if you have one.
If you have a gpu and can use it, you will see the result. Otherwise you will see an error with a long stacktrace. In the end you will have something like this:
Cannot assign a device to node ‘MatMul’: Could not satisfy explicit device specification ‘/device:GPU:0’ because no devices matching that specification are registered in this process
Recently a few helpful functions appeared in TF:
You can also check for available devices in the session:
with tf.Session() as sess:
devices = sess.list_devices()
devices
will return you something like
[_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:CPU:0, CPU, -1, 4670268618893924978),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 6127825144471676437),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 16148453971365832732),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 10003582050679337480),
_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 5678397037036584928)
回答 2
以下代码段应为您提供所有可用于tensorflow的设备。
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
样本输出
[name:“ / cpu:0” device_type:“ CPU” memory_limit:268435456本地化{}化身:4402277519343584096,
名称:“ / gpu:0” device_type:“ GPU” memory_limit:6772842168本地化{bus_id:1}化身:7471795903849088328 physical_device_desc:“设备:0,名称:GeForce GTX 1070,pci总线ID:0000:05:00.0”]
Following piece of code should give you all devices available to tensorflow.
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
Sample Output
[name: “/cpu:0” device_type: “CPU” memory_limit: 268435456 locality { } incarnation: 4402277519343584096,
name: “/gpu:0” device_type: “GPU” memory_limit: 6772842168 locality { bus_id: 1 } incarnation: 7471795903849088328 physical_device_desc: “device: 0, name: GeForce GTX 1070, pci bus id: 0000:05:00.0” ]
回答 3
我认为有一个更简单的方法可以实现这一目标。
import tensorflow as tf
if tf.test.gpu_device_name():
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
else:
print("Please install GPU version of TF")
它通常打印像
Default GPU Device: /device:GPU:0
在我看来,这比那些冗长的日志更容易。
I think there is an easier way to achieve this.
import tensorflow as tf
if tf.test.gpu_device_name():
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
else:
print("Please install GPU version of TF")
It usually prints like
Default GPU Device: /device:GPU:0
This seems easier to me rather than those verbose logs.
回答 4
Tensorflow 2.0
会话在2.0中不再使用。相反,可以使用tf.test.is_gpu_available
:
import tensorflow as tf
assert tf.test.is_gpu_available()
assert tf.test.is_built_with_cuda()
如果出现错误,则需要检查安装。
Tensorflow 2.0
Sessions are no longer used in 2.0. Instead, one can use tf.test.is_gpu_available
:
import tensorflow as tf
assert tf.test.is_gpu_available()
assert tf.test.is_built_with_cuda()
If you get an error, you need to check your installation.
回答 5
这是否可以确认使用GPU同时训练tensorflow吗?
码
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
输出量
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:01:00.0
Total memory: 1.98GiB
Free memory: 1.72GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0
I tensorflow/core/common_runtime/direct_session.cc:255] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0
This will confirm that tensorflow using GPU while training also ?
Code
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Output
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:01:00.0
Total memory: 1.98GiB
Free memory: 1.72GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0
I tensorflow/core/common_runtime/direct_session.cc:255] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0
回答 6
除了其他答案之外,以下内容还应帮助您确保您的tensorflow版本包括GPU支持。
import tensorflow as tf
print(tf.test.is_built_with_cuda())
In addition to other answers, the following should help you to make sure that your version of tensorflow includes GPU support.
import tensorflow as tf
print(tf.test.is_built_with_cuda())
回答 7
好的,首先ipython shell
从终端和import
TensorFlow 启动一个:
$ ipython --pylab
Python 3.6.5 |Anaconda custom (64-bit)| (default, Apr 29 2018, 16:14:56)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.
Using matplotlib backend: Qt5Agg
In [1]: import tensorflow as tf
现在,我们可以使用以下命令在控制台中查看 GPU内存使用情况:
# realtime update for every 2s
$ watch -n 2 nvidia-smi
由于我们只import
使用过TensorFlow,但尚未使用任何GPU,因此使用情况统计信息为:
请注意,GPU内存使用情况非常少(〜700MB);有时,GPU内存使用量甚至可能低至0 MB。
现在,让我们在代码中加载GPU。如中所示tf documentation
,执行以下操作:
In [2]: sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
现在,手表统计信息应显示更新的GPU使用情况内存,如下所示:
现在观察从ipython shell进行的Python进程如何使用约7 GB的GPU内存。
PS:您可以在代码运行时继续观看这些统计信息,以了解随着时间的推移GPU使用的强度。
Ok, first launch an ipython shell
from the terminal and import
TensorFlow:
$ ipython --pylab
Python 3.6.5 |Anaconda custom (64-bit)| (default, Apr 29 2018, 16:14:56)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.
Using matplotlib backend: Qt5Agg
In [1]: import tensorflow as tf
Now, we can watch the GPU memory usage in a console using the following command:
# realtime update for every 2s
$ watch -n 2 nvidia-smi
Since we’ve only import
ed TensorFlow but have not used any GPU yet, the usage stats will be:
Notice how the GPU memory usage is very less (~ 700MB); Sometimes the GPU memory usage might even be as low as 0 MB.
Now, let’s load the GPU in our code. As indicated in tf documentation
, do:
In [2]: sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
Now, the watch stats should show an updated GPU usage memory as below:
Observe now how our Python process from the ipython shell is using ~ 7 GB of the GPU memory.
P.S. You can continue watching these stats as the code is running, to see how intense the GPU usage is over time.
回答 8
这应该给出可用于Tensorflow的设备列表(在Py-3.6下):
tf = tf.Session(config=tf.ConfigProto(log_device_placement=True))
tf.list_devices()
# _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456)
This should give the list of devices available for Tensorflow (under Py-3.6):
tf = tf.Session(config=tf.ConfigProto(log_device_placement=True))
tf.list_devices()
# _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456)
回答 9
我更喜欢使用nvidia-smi来监视GPU使用情况。如果在您开始编程时它显着上升,则表明您的张量流正在使用GPU。
I prefer to use nvidia-smi to monitor GPU usage. if it goes up significantly when you start you program, it’s a strong sign that your tensorflow is using GPU.
回答 10
使用Tensorflow的最新更新,您可以按以下步骤进行检查:
tf.test.is_gpu_available( cuda_only=False, min_cuda_compute_capability=None)
这将返回True
如果正在使用的GPU Tensorflow
,并返回False
否则。
如果需要设备device_name
,可以键入:tf.test.gpu_device_name()
。从这里获取更多详细信息
With the recent updates of Tensorflow, you can check it as follow :
tf.test.is_gpu_available( cuda_only=False, min_cuda_compute_capability=None)
This will return True
if GPU is being used by Tensorflow
, and return False
otherwise.
If you want device device_name
you can type : tf.test.gpu_device_name()
.
Get more details from here
回答 11
在Jupyter中运行以下命令,
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
如果您已经正确设置了环境,则在运行“ jupyter notebook”的终端中将获得以下输出,
2017-10-05 14:51:46.335323: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K620, pci bus id: 0000:02:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K620, pci bus id: 0000:02:00.0
2017-10-05 14:51:46.337418: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\direct_session.cc:265] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K620, pci bus id: 0000:02:00.0
您可以在这里看到我正在使用TensorFlow和Nvidia Quodro K620。
Run the following in Jupyter,
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
If you’ve set up your environment properly, you’ll get the following output in the terminal where you ran “jupyter notebook”,
2017-10-05 14:51:46.335323: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Quadro K620, pci bus id: 0000:02:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K620, pci bus id: 0000:02:00.0
2017-10-05 14:51:46.337418: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\direct_session.cc:265] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Quadro K620, pci bus id: 0000:02:00.0
You can see here I’m using TensorFlow with an Nvidia Quodro K620.
回答 12
我发现仅从命令行查询gpu是最简单的:
nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.98 Driver Version: 384.98 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 980 Ti Off | 00000000:02:00.0 On | N/A |
| 22% 33C P8 13W / 250W | 5817MiB / 6075MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1060 G /usr/lib/xorg/Xorg 53MiB |
| 0 25177 C python 5751MiB |
+-----------------------------------------------------------------------------+
如果您的学习是后台进程,则pid的来源
jobs -p
应与pid的来源相匹配nvidia-smi
I find just querying the gpu from the command line is easiest:
nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.98 Driver Version: 384.98 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 980 Ti Off | 00000000:02:00.0 On | N/A |
| 22% 33C P8 13W / 250W | 5817MiB / 6075MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1060 G /usr/lib/xorg/Xorg 53MiB |
| 0 25177 C python 5751MiB |
+-----------------------------------------------------------------------------+
if your learning is a background process the pid from
jobs -p
should match the pid from nvidia-smi
回答 13
您可以通过运行以下代码来检查当前是否正在使用GPU:
import tensorflow as tf
tf.test.gpu_device_name()
如果输出为''
,则表示您CPU
仅在使用;
如果输出是类似的内容/device:GPU:0
,则表示GPU
有效。
并使用以下代码检查GPU
您正在使用的代码:
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
You can check if you are currently using the GPU by running the following code:
import tensorflow as tf
tf.test.gpu_device_name()
If the output is ''
, it means you are using CPU
only;
If the output is something like that /device:GPU:0
, it means GPU
works.
And use the following code to check which GPU
you are using:
from tensorflow.python.client import device_lib
device_lib.list_local_devices()
回答 14
将其放在jupyter笔记本顶部附近。注释掉您不需要的内容。
# confirm TensorFlow sees the GPU
from tensorflow.python.client import device_lib
assert 'GPU' in str(device_lib.list_local_devices())
# confirm Keras sees the GPU (for TensorFlow 1.X + Keras)
from keras import backend
assert len(backend.tensorflow_backend._get_available_gpus()) > 0
# confirm PyTorch sees the GPU
from torch import cuda
assert cuda.is_available()
assert cuda.device_count() > 0
print(cuda.get_device_name(cuda.current_device()))
注意:随着TensorFlow 2.0的发布,Keras现在已包含在TF API中。
最初在这里回答。
Put this near the top of your jupyter notebook. Comment out what you don’t need.
# confirm TensorFlow sees the GPU
from tensorflow.python.client import device_lib
assert 'GPU' in str(device_lib.list_local_devices())
# confirm Keras sees the GPU (for TensorFlow 1.X + Keras)
from keras import backend
assert len(backend.tensorflow_backend._get_available_gpus()) > 0
# confirm PyTorch sees the GPU
from torch import cuda
assert cuda.is_available()
assert cuda.device_count() > 0
print(cuda.get_device_name(cuda.current_device()))
NOTE: With the release of TensorFlow 2.0, Keras is now included as part of the TF API.
Originally answerwed here.
回答 15
对于Tensorflow 2.0
import tensorflow as tf
tf.test.is_gpu_available(
cuda_only=False,
min_cuda_compute_capability=None
)
来源在这里
其他选择是:
tf.config.experimental.list_physical_devices('GPU')
For Tensorflow 2.0
import tensorflow as tf
tf.test.is_gpu_available(
cuda_only=False,
min_cuda_compute_capability=None
)
source here
other option is:
tf.config.experimental.list_physical_devices('GPU')
回答 16
TENSORFLOW的更新> = 2.1。
检查TensorFlow是否使用GPU的推荐方法如下:
tf.config.list_physical_devices('GPU')
从TensorFlow 2.1开始,tf.test.gpu_device_name()
已不赞成使用上述内容。
UPDATE FOR TENSORFLOW >= 2.1.
The recommended way in which to check if TensorFlow is using GPU is the following:
tf.config.list_physical_devices('GPU')
As of TensorFlow 2.1, tf.test.gpu_device_name()
has been deprecated in favour of the aforementioned.
Then, in the terminal you can use nvidia-smi
to check how much GPU memory has been alloted; at the same time, using watch -n K nvidia-smi
would tell you for example every K seconds how much memory you are using (you may want to use K = 1
for real-time)
回答 17
这是我用来列出可tf.session
直接从bash 访问的设备的行:
python -c "import os; os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'; import tensorflow as tf; sess = tf.Session(); [print(x) for x in sess.list_devices()]; print(tf.__version__);"
它将打印可用设备和tensorflow版本,例如:
_DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456, 10588614393916958794)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 12320120782636586575)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 13378821206986992411)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:GPU:0, GPU, 32039954023, 12481654498215526877)
1.14.0
This is the line I am using to list devices available to tf.session
directly from bash:
python -c "import os; os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'; import tensorflow as tf; sess = tf.Session(); [print(x) for x in sess.list_devices()]; print(tf.__version__);"
It will print available devices and tensorflow version, for example:
_DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456, 10588614393916958794)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 12320120782636586575)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 13378821206986992411)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:GPU:0, GPU, 32039954023, 12481654498215526877)
1.14.0
回答 18
我发现下面的代码片段非常方便测试gpu ..
Tensorflow 2.0测试
import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
Tensorflow 1测试
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
I found below snippet is very handy to test the gpu ..
Tensorflow 2.0 Test
import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
Tensorflow 1 Test
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
回答 19
以下内容还将返回您的GPU设备的名称。
import tensorflow as tf
tf.test.gpu_device_name()
The following will also return the name of your GPU devices.
import tensorflow as tf
tf.test.gpu_device_name()
回答 20
使用tensotflow 2.0> =
import tensorflow as tf
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
With tensorflow 2.0 >=
import tensorflow as tf
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
回答 21
您可以使用一些选项来测试TensorFlow安装是否正在使用GPU加速。
您可以在三个不同的平台上键入以下命令。
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
- Jupyter Notebook-检查正在运行Jupyter Notebook的控制台。您将能够看到正在使用的GPU。
- Python Shell-您将能够直接看到输出。(注意-不要将第二个命令的输出分配给变量’sess’;如果有帮助的话)。
Spyder-在控制台中键入以下命令。
import tensorflow as tf
tf.test.is_gpu_available()
You have some options to test whether GPU acceleration is being used by your TensorFlow installation.
You can type in the following commands in three different platforms.
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
- Jupyter Notebook – Check the console which is running the Jupyter Notebook. You will be able to see the GPU being used.
- Python Shell – You will be able to directly see the output. (Note- do not assign the output of the second command to the variable ‘sess’; if that helps).
Spyder – Type in the following command in the console.
import tensorflow as tf
tf.test.is_gpu_available()
回答 22
Tensorflow 2.1
可以使用nvidia-smi进行验证的简单计算,以了解GPU上的内存使用情况。
import tensorflow as tf
c1 = []
n = 10
def matpow(M, n):
if n < 1: #Abstract cases where n < 1
return M
else:
return tf.matmul(M, matpow(M, n-1))
with tf.device('/gpu:0'):
a = tf.Variable(tf.random.uniform(shape=(10000, 10000)), name="a")
b = tf.Variable(tf.random.uniform(shape=(10000, 10000)), name="b")
c1.append(matpow(a, n))
c1.append(matpow(b, n))
Tensorflow 2.1
A simple calculation that can be verified with nvidia-smi for memory usage on the GPU.
import tensorflow as tf
c1 = []
n = 10
def matpow(M, n):
if n < 1: #Abstract cases where n < 1
return M
else:
return tf.matmul(M, matpow(M, n-1))
with tf.device('/gpu:0'):
a = tf.Variable(tf.random.uniform(shape=(10000, 10000)), name="a")
b = tf.Variable(tf.random.uniform(shape=(10000, 10000)), name="b")
c1.append(matpow(a, n))
c1.append(matpow(b, n))
回答 23
>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
2020-05-10 14:58:16.243814: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-05-10 14:58:16.262675: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-10 14:58:16.263119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1060 6GB computeCapability: 6.1
coreClock: 1.7715GHz coreCount: 10 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
2020-05-10 14:58:16.263143: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-05-10 14:58:16.263188: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-05-10 14:58:16.264289: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-05-10 14:58:16.264495: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-05-10 14:58:16.265644: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-05-10 14:58:16.266329: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-05-10 14:58:16.266357: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-05-10 14:58:16.266478: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-10 14:58:16.266823: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-10 14:58:16.267107: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
如@AmitaiIrron所建议:
本部分表明已找到一个GPU
2020-05-10 14:58:16.263119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1060 6GB computeCapability: 6.1
coreClock: 1.7715GHz coreCount: 10 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
在这里,它被添加为可用的物理设备
2020-05-10 14:58:16.267107: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
2020-05-10 14:58:16.243814: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-05-10 14:58:16.262675: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-10 14:58:16.263119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1060 6GB computeCapability: 6.1
coreClock: 1.7715GHz coreCount: 10 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
2020-05-10 14:58:16.263143: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-05-10 14:58:16.263188: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-05-10 14:58:16.264289: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-05-10 14:58:16.264495: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-05-10 14:58:16.265644: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-05-10 14:58:16.266329: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-05-10 14:58:16.266357: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-05-10 14:58:16.266478: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-10 14:58:16.266823: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-10 14:58:16.267107: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
As suggested by @AmitaiIrron:
This section indicates that a gpu was found
2020-05-10 14:58:16.263119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1060 6GB computeCapability: 6.1
coreClock: 1.7715GHz coreCount: 10 deviceMemorySize: 5.93GiB deviceMemoryBandwidth: 178.99GiB/s
And here that it got added as an available physical device
2020-05-10 14:58:16.267107: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
回答 24
如果您正在使用TensorFlow 2.0,则可以使用此for循环显示设备:
with tf.compat.v1.Session() as sess:
devices = sess.list_devices()
devices
If you are using TensorFlow 2.0, you can use this for loop to show the devices:
with tf.compat.v1.Session() as sess:
devices = sess.list_devices()
devices
回答 25
如果您使用的是tensorflow 2.x,请使用:
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
if you are using tensorflow 2.x use:
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
回答 26
在Jupyter或IDE中运行以下命令以检查Tensorflow是否使用GPU: tf.config.list_physical_devices('GPU')
Run this command in Jupyter or your IDE to check if Tensorflow is using a GPU or not: tf.config.list_physical_devices('GPU')
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。