关于

SpleeterDeezer编写了预先训练好的模型的源分隔库Python并使用Tensorflow它使训练源分离模型变得很容易(假设您有一个孤立源的数据集),并且提供了已经训练过的用于执行各种风格的分离的最先进的模型:

  • 人声(歌声)/伴奏分离(2 stems)
  • 人声/鼓/低音/其他分离(4 stems)
  • 人声/鼓/低音/钢琴/其他分离(5 stems)

2杆和4杆型号有high performancesmusdb数据集。Spleeter速度也非常快,因为当在GPU上运行时,它可以将音频文件分离到4条主干,速度比实时快100倍

我们设计了Spleeter这样你就可以直接从command line以及直接在您自己的开发管道中作为Python library它可以与安装在一起pip或与以下内容一起使用Docker

项目和软件使用Spleeter

自从发布以来,已经有多个叉子暴露出来了。Spleeter通过引导式用户界面(GUI)或独立的免费或付费网站。请注意,我们不会主办、维护或直接支持任何此类计划

也就是说,很多很酷的项目都建在我们的基础上。值得注意的是,移植到Ableton Live生态系统通过Spleeter 4 Max项目

Spleeter专业音频软件也使用了预先训练好的模型。以下是一个非详尽的列表:

🆕Spleeter是正在进行中的基线Music Demixing Challenge好了!

快速入门

想试一下,但不想安装任何东西吗?我们已经建立了一个Google Colab

准备好加入挖洞了吗?只需几行代码,您就可以安装Spleeter并从示例音频文件中分离声乐和伴奏部分。您需要先安装ffmpeglibsndfile它可以在大多数平台上使用Conda

# install dependencies using conda
conda install -c conda-forge ffmpeg libsndfile
# install spleeter with pip
pip install spleeter
# download an example audio file (if you don't have wget, use another tool for downloading)
wget https://github.com/deezer/spleeter/raw/master/audio_example.mp3
# separate the example audio into two components
spleeter separate -p spleeter:2stems -o output audio_example.mp3

⚠️请注意,我们不再推荐使用conda用于安装喷射器

⚠️苹果M1芯片有一些已知的问题,主要是由于TensorFlow兼容性问题。在这些问题得到解决之前,您可以使用this workaround

您应该会得到两个独立的音频文件(vocals.wavaccompaniment.wav)在output/audio_example文件夹

有关详细文档,请查看repository wiki

开发和测试

此项目使用以下工具进行管理Poetry,要运行测试套件,您可以执行以下命令集:

# Clone spleeter repository
git clone https://github.com/Deezer/spleeter && cd spleeter
# Install poetry
pip install poetry
# Install spleeter dependencies
poetry install
# Run unit test suite
poetry run pytest tests/

参考文献

如果您使用Spleeter在您的工作中,请引用:

@article{spleeter2020,
  doi = {10.21105/joss.02154},
  url = {https://doi.org/10.21105/joss.02154},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {50},
  pages = {2154},
  author = {Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussallam},
  title = {Spleeter: a fast and efficient music source separation tool with pre-trained models},
  journal = {Journal of Open Source Software},
  note = {Deezer Research}
}

许可证

的代码SpleeterMIT-licensed

免责声明

如果您计划使用Spleeter对于受版权保护的材料,请确保事先获得版权所有者的适当授权

故障排除

Spleeter是一款复杂的软件,尽管我们不断尝试改进和测试它,但您在运行它时可能会遇到意想不到的问题。如果是这样的话,请查看FAQ page第一个以及currently open issues

Windows用户

似乎有时快捷命令spleeter在Windows上无法正常工作。这是一个已知的问题,我们希望很快就能解决。在此期间,更换spleeter separate通过python -m spleeter separate在命令行中,它应该可以工作

贡献

如果您愿意参与开发Spleeter我们非常欢迎您这样做。请不要犹豫向我们提出拉货要求,我们会尽最大努力快速检查。请查看我们的guidelines第一

注意事项

此存储库包括演示音频文件audio_example.mp3这是史蒂文·M·布莱恩特(Steven M Bryant)“慢动作梦”(Slow Motion Dream)的节选(C)版权所有2011年,版权归知识共享署名(3.0)license英国《金融时报》:CSoul,Alex Beroza&Robert Siekawitch

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。