标签归档:dict

Box 为你的字典添加点符号访问特性

正常情况下,我们想访问字典中的某个值,都是通过中括号访问,比如:

test_dict = {"test": {"imdb stars": 6.7, "length": 104}}

print(test_dict["test"]["imdb stars"])
# 104

而通过Box模块,我们可以扩展字典功能,使用点符号访问元素:

from box import Box

movie_box = Box({ "Robin Hood: Men in Tights": { "imdb stars": 6.7, "length": 104 } })

movie_box.Robin_Hood_Men_in_Tights.imdb_stars

# 6.7

另外,可以看到默认情况下转换后,字典键值中的空格被转化为了下划线。

下面具体介绍 Box 模块的使用方法。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器来编写小型Python项目:Python 编程的最好搭档—VSCode 详细指南

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),输入命令安装依赖:

pip install --upgrade python-box[all]

2.基本使用

我们可以像文章开头那样传入一个字典给 Box,生成一个Box对象;也可以直接使用参数赋值的方式生成一个Box对象:

from box import Box

my_box = Box(funny_movie='Hudson Hawk', best_movie='Kung Fu Panda')
my_box.funny_movie
# 'Hudson Hawk'

请记住,任何情况下,你往Box对象里添加字典或是数组,这些字典或数组都会被转变为Box对象:

my_box = Box({"team": {"red": {"leader": "Sarge", "members": []}}})
print(my_box.team.red.leader)
# Sarge

my_box.team.blue = {"leader": "Church", "members": []} 
print(repr(my_box.team.blue))
# <Box: {'leader': 'Church', 'members': []}>

访问列表中的 Box 对象也非常轻松:

my_box.team.red.members = [
    {"name": "Grif", "rank": "Minor Junior Private Negative First Class"},
    {"name": "Dick Simmons", "rank": "Captain"}
]

print(my_box.team.red.members[0].name)
# Grif

局限性

请注意,字典中有些默认方法,如:clear, copy, fromkeys, get, items, keys, pop, popitem, setdefault, to_dict, update, merge_update, values,当你的键值和这些方法名称冲突时,你无法使用点符号访问它们。

不过冲突时,你依然可以使用传统的字典取值访问它们,例如:

my_box['keys']

合并

要合并两个Box对象,你只需要通过 merge_update 方法:

from box import Box

box_1 = Box(val={'important_key': 1}) 
box_2 = Box(val={'less_important_key': 2})

box_1.merge_update(box_2)

print(box_1)
# {'val': {'important_key': 1, 'less_important_key': 2}}

当然,你也可以用传统的 update 方法:

from box import Box

box_1 = Box(val={'important_key': 1}) 
box_2 = Box(val={'less_important_key': 2})

box_1.update(box_2)

print(box_1)
# {'val': {'less_important_key': 2}}

转换为原始列表/字典

如果你需要把一个 Box 对象的字典转化为原始字典,.to_dict() 方法就可以帮你实现:

from box import Box

box_1 = Box(val={'important_key': 1}) 

print(box_1)
# {'val': {'less_important_key': 2}}
print(type(box_1))
# <class 'box.box.Box'>
print(type(box_1.to_dict()))
# <class 'dict'>

如果你需要把一个 Box 对象的列表转化为原始列表,你可以使用 .to_list() 方法:

from box import BoxList

my_boxlist = BoxList({'item': x} for x in range(10))
#  <BoxList: [<Box: {'item': 0}>, <Box: {'item': 1}>, ...

my_boxlist[5].item
# 5

print(type(my_boxlist.to_list()))
# <class 'list'>

3.导入导出功能

Box对象有一个很方便的功能,就是能够轻松地将Box对象导出为Json/yaml/csv/msgpack文件:

from box import BoxList

my_boxlist = BoxList({'item': x} for x in range(10))
#  <BoxList: [<Box: {'item': 0}>, <Box: {'item': 1}>, ...

my_boxlist.to_json(filename="test.json")
# 在当前文件夹下生成一个 test.json 文件

此外,还能接受 Json/yaml/csv/msgpack 文件导入:

new_box = Box.from_json(filename="films.json")

各种类型的文件对应的方法如下:

转换器方法描述
to_dict递归地将所有 Box(和 BoxList)对象转换回字典(和列表)
to_json将 Box 对象另存为 JSON 字符串或使用filename参数写入文件
to_yaml将 Box 对象另存为 YAML 字符串或使用filename参数写入文件
to_msgpack将 Box 对象另存为 msgpack 字节或使用filename参数写入文件
to_toml*将 Box 对象另存为 TOML 字符串或使用filename参数写入文件
to_csv**将 BoxList 对象另存为 CSV 字符串或使用filename参数写入文件
from_jsonClassmethod,从一个 JSON 文件或字符串创建一个 Box 对象(所有 Box 参数都可以传递)
from_yaml类方法,从 YAML 文件或字符串创建一个 Box 对象(所有 Box 参数都可以传递)
from_msgpackClassmethod,从msgpack文件或字节创建一个Box对象(所有Box参数都可以传递)
from_toml*Classmethod,从TOML文件或字符串创建一个Box对象(所有Box参数都可以传递)
from_csv**Classmethod,从一个CSV文件或字符串创建一个BoxList对象(可以传递所有BoxList参数)

* 不适用于 BoxList,仅适用于 Box ** 不适用于 Box,仅适用于 BoxList。

还有更多的特性,大家可以参考 Box 模块官方WIki:

https://github.com/cdgriffith/Box/wiki

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典

Addict 写起来令人极其舒适的字典模块

Addit 是一个Python模块,除了提供标准的字典语法外,Addit生成的字典的值既可以使用属性来获取,也可以使用属性进行设置。

这意味着你不用再写这样的字典了:

 

body = {
    'query': {
        'filtered': {
            'query': {
                'match': {'description': 'addictive'}
            },
            'filter': {
                'term': {'created_by': 'Mats'}
            }
        }
    }
}

相反,你只需编写以下三行就能完成目的:

body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'

1.安装

你可以通过安装pip

pip install addict

或通过conda

conda install addict -c conda-forge

Addit 在Python2.7+和Python3上都可以运行。

2.用法

Addict 继承自dict,但在访问和设置其值方面更加灵活。使用字典现在是一种乐趣!

设置嵌套词典的项是极其舒服的:

>>> from addict import Dict
>>> mapping = Dict()
>>> mapping.a.b.c.d.e = 2
>>> mapping
{'a': {'b': {'c': {'d': {'e': 2}}}}}

如果Dict是用任何可迭代值实例化的,它将遍历并克隆这些值,然后写入到对应的属性及值中,比如:

>>> mapping = {'a': [{'b': 3}, {'b': 3}]}
>>> dictionary = Dict(mapping)
>>> dictionary.a[0].b
3

mapping['a']不再与dictionary['a']相同。

>>> mapping['a'] is dictionary['a']
False

当然,此特点仅限于构造函数,而不是在使用属性或设置值时:

>>> a = Dict()
>>> b = [1, 2, 3]
>>> a.b = b
>>> a.b is b
True

3.要牢记的事情

记住,int不是有效的属性名,因此必须使用 get/setitem 语法 设置/获取 非字符串的dict键:

>>> addicted = Dict()
>>> addicted.a.b.c.d.e = 2
>>> addicted[2] = [1, 2, 3]
{2: [1, 2, 3], 'a': {'b': {'c': {'d': {'e': 2}}}}}

不过,你可以随意混合使用这两种语法:

>>> addicted.a.b['c'].d.e
2

4.属性,如键、item等

Addit 不会让你覆盖dict的属性,因此以下操作将不起作用

>>> mapping = Dict()
>>> mapping.keys = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "addict/addict.py", line 53, in __setattr__
raise AttributeError("'Dict' object attribute '%s' is read-only" % name)
AttributeError: 'Dict' object attribute 'keys' is read-only

不过,使用下面这种方式就可以:

>>> a = Dict()
>>> a['keys'] = 2
>>> a
{'keys': 2}
>>> a['keys']
2

5.默认值

对于不在字典中的键,Addit的行为如defaultdict(Dict),因此丢失的键返回一个空的Dict而不是抛出KeyError如果此行为不是所需的,则可以使用以下方式恢复抛出KeyError:

>>> class DictNoDefault(Dict):
>>> def __missing__(self, key):
>>> raise KeyError(key)

但请注意,这样会失去速记赋值功能(addicted.a.b.c.d.e = 2)

6.转化为普通字典

如果你觉得将 Addict 传递到其他函数或模块并不安全,请使用to_dict()方法,它返回会把 Addict 转化为普通字典。

>>> regular_dict = my_addict.to_dict()
>>> regular_dict.a = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'a'

当您希望在几行代码中创建嵌套的字典,然后将其发送到不同的函数或模块时,这非常适合:

body = Dict()
body.query.filtered.query.match.description = 'addictive'
body.query.filtered.filter.term.created_by = 'Mats'
third_party_module.search(query=body.to_dict())

7.计数

Dict轻松访问和修改深度嵌套属性的能力使其成为计数的理想选择。使用Addict,你还可以容易允许按多个级别计数,内部使用的原理是collections.Counter

比如以下数据:

data = [
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'F', 'eyes': 'green'},
    {'born': 1980, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'M', 'eyes': 'green'},
    {'born': 1980, 'gender': 'F', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'F', 'eyes': 'green'},
    {'born': 1981, 'gender': 'M', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'F', 'eyes': 'blue'},
    {'born': 1981, 'gender': 'M', 'eyes': 'green'},
    {'born': 1981, 'gender': 'F', 'eyes': 'blue'}
]

如果你想计算有多少人出生在born性别的gender使用eyes眼睛,你可以很容易地计算出这些信息:

counter = Dict()

for row in data:
born = row['born']
gender = row['gender']
eyes = row['eyes']
counter
[born][gender][eyes] += 1 print(counter)

{1980: {'M': {'blue': 1, 'green': 3}, 'F': {'blue': 1, 'green': 1}}, 1981: {'M': {'blue': 2, 'green': 1}, 'F': {'blue': 2, 'green': 1}}}

8.更新

普通字典的更新方式如下:

>>> d = {'a': {'b': 3}}
>>> d.update({'a': {'c': 4}})
>>> print(d)
{'a': {'c': 4}}

addict的更新方式如下,它会递归并实际更新嵌套的字典:

>>> D = Dict({'a': {'b': 3}})
>>> D.update({'a': {'c': 4}})
>>> print(D)
{'a': {'b': 3, 'c': 4}}

9.为什么需要addict

这个模块完全是从用Python创建Elasticsearch查询的繁琐过程中发展而来的。每当你发现自己在写了很复杂的字典逻辑时,只要记住你没有必要这样做,使用 Addict 就行。

我们的文章到此就结束啦,如果你喜欢今天的 Python 教程,请持续关注Python实用宝典。

有任何问题,可以在公众号后台回复:加群,回答相应验证信息,进入互助群询问。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

给作者打赏,选择打赏金额
¥1¥5¥10¥20¥50¥100¥200 自定义

​Python实用宝典 ( pythondict.com )
不只是一个宝典
欢迎关注公众号:Python实用宝典